Sensitivity Analysis of C. auris, S. cerevisiae, and C. cladosporioides by Irradiation with Far-UVC, UVC, and UVB

Main Article Content

Anna-Maria Gierke
Martin Hessling

Abstract

Background: The World Health Organization has published a list of pathogenic fungi with prioritizing groups and calls for research and development of antifungal measures, with Candida auris belonging to the group with high priority.


Methods: The photosensitivity towards short wavelength ultraviolet irradiation (Far-UVC, UVC, and UVB) was investigated and compared to other yeasts (Saccharomyces cerevisiae) and a mold (Cladosporium cladosporioides). The observed 1-log reduction doses were compared to literature values of other representatives of the genus Candida, but also with S. cerevisiae, Aspergillus niger, and A. fumigatus.


Results: For the determined 1-log reduction doses, an increase with higher wavelengths was observed. A 1-log reduction dose of 4.3 mJ/cm2 was determined for C. auris when irradiated at 222 nm, a dose of 6.1 mJ/cm2 at 254 nm and a 1-log reduction dose of 51.3 mJ/cm2 was required when irradiated with UVB.


Conclusions: It was observed that S. cerevisiae is a possible surrogate for C. auris for irradiation with Far-UVC and UVB due to close 1-log reduction doses. No surrogate suitability was verified for C. cladosporioides in relation to A. niger and A. fumigatus for irradiation with a wavelength of 254 nm and for A. niger at 222 nm.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

1. World Health Organization. Antimicrobial Resistance Division; World Health Organization. Control of Neglected Tropical Diseases; World Health Organization. Global Coordination and Partnership; Alastruey-Izquierdo A. WHO fungal priority pathogens list to guide research, development and public health action; Organización Mundial de la Salud (OMS) 978-92-4-006025-8 2022.

2. Ahmad S, Asadzadeh M. Strategies to Prevent Transmission of Candida auris in Healthcare Settings. Curr Fungal Infect Rep. 2023;17(1):36-48. doi: 10.1007/s12281-023-00451-7. PubMed PMID: 36718372; PMCID: PMC9878498.

3. Du H, Bing J, Hu T, Ennis CL, Nobile CJ, Huang G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020;16(10):e1008921. doi: 10.1371/journal.ppat.1008921. PubMed PMID: 33091071; PMCID: PMC7581363.

4. Chakrabarti A, Singh S. Multidrug-resistant Candida auris: an epidemiological review. Expert Rev Anti Infect Ther. 2020;18(6):551-62. doi: 10.1080/14787210.2020.1750368. PubMed PMID: 32237924.

5. Dal Mas C, Rossato L, Shimizu T, Oliveira EB, da Silva Junior PI, Meis JF, Colombo AL, Hayashi MAF. Effects of the Natural Peptide Crotamine from a South American Rattlesnake on Candida auris, an Emergent Multidrug Antifungal Resistant Human Pathogen. Biomolecules. 2019;9(6). doi: 10.3390/biom9060205. PubMed PMID: 31141959; PMCID: PMC6627186.

6. Aldejohann AM, Martin R, Hecht J, Haller S, Rickerts V, Walther G, Eckmanns T, Kurzai O. Rise in Candida Auris Cases and First Nosocomial Transmissions in Germany. Dtsch Arztebl Int. 2023;120(27-28):447-78. doi: 10.3238/arztebl.m2023.0047. PubMed PMID: 37661316.

7. Vicente MF, Basilio A, Cabello A, Peláez F. Microbial natural products as a source of antifungals. Clin Microbiol Infect. 2003;9(1):15-32. doi: 10.1046/j.1469-0691.2003.00489.x. PubMed PMID: 12691539.

8. Horton MV, Nett JE. Candida auris infection and biofilm formation: going beyond the surface. Curr Clin Microbiol Rep. 2020;7(3):51-6. doi: 10.1007/s40588-020-00143-7. PubMed PMID: 33178552; PMCID: PMC7654955.

9. Adams E, Quinn M, Tsay S, Poirot E, Chaturvedi S, Southwick K, Greenko J, Fernandez R, Kallen A, Vallabhaneni S, Haley V, Hutton B, Blog D, Lutterloh E, Zucker H. Candida auris in Healthcare Facilities, New York, USA, 2013-2017. Emerg Infect Dis. 2018;24(10):1816-24. doi: 10.3201/eid2410.180649. PubMed PMID: 30226155; PMCID: PMC6154128.

10. Lockhart SR. Candida auris and multidrug resistance: Defining the new normal. Fungal Genet Biol. 2019;131:103243. doi: 10.1016/j.fgb.2019.103243. PubMed PMID: 31228646.

11. Kean R, Brown J, Gulmez D, Ware A, Ramage G. Candida auris: A Decade of Understanding of an Enigmatic Pathogenic Yeast. J Fungi (Basel). 2020;6(1). doi: 10.3390/jof6010030. PubMed PMID: 32110970; PMCID: PMC7150997.

12. Choi HI, An J, Hwang JJ, Moon SY, Son JS. Otomastoiditis caused by Candida auris: Case report and literature review. Mycoses. 2017;60(8):488-92. doi: 10.1111/myc.12617. PubMed PMID: 28378904.

13. Zatorska B, Moser D, Diab-Elschahawi M, Ebner J, Lusignani LS, Presterl E. The effectiveness of surface disinfectants and a micellic H(2)O(2) based water disinfectant on Candida auris. J Mycol Med. 2021;31(4):101178. doi: 10.1016/j.mycmed.2021.101178. PubMed PMID: 34388399.

14. Moore G, Schelenz S, Borman AM, Johnson EM, Brown CS. Yeasticidal activity of chemical disinfectants and antiseptics against Candida auris. J Hosp Infect. 2017;97(4):371-5. doi: 10.1016/j.jhin.2017.08.019. PubMed PMID: 28865738.

15. Cadnum JL, Shaikh AA, Piedrahita CT, Sankar T, Jencson AL, Larkin EL, Ghannoum MA, Donskey CJ. Effectiveness of Disinfectants Against Candida auris and Other Candida Species. Infect Control Hosp Epidemiol. 2017;38(10):1240-3. doi: 10.1017/ice.2017.162. PubMed PMID: 28793937.

16. Ramasamy K, Shanmugam M, Balupillai A, Govindhasamy K, Gunaseelan S, Muthusamy G, Robert BM, Nagarajan RP. Ultraviolet Radiation-induced Carcinogenesis: Mechanisms and Experimental Models. Journal of Radiation and Cancer Research. 2017;8(1):4-19. doi: 10.4103/0973-0168.199301. PubMed PMID: 02034728-201708010-00002.

17. Nishigori C, Yamano N, Kunisada M, Nishiaki-Sawada A, Ohashi H, Igarashi T. Biological Impact of Shorter Wavelength Ultraviolet Radiation-C(†). Photochem Photobiol. 2023;99(2):335-43. doi: 10.1111/php.13742. PubMed PMID: 36355343.

18. Harm W. Biological effects of ultraviolet radiation. United Kingdom: University Press; 1980.

19. Armstrong JD, Kunz BA. Photoreactivation implicates cyclobutane dimers as the major promutagenic UVB lesions in yeast. Mutat Res. 1992;268(1):83-94. doi: 10.1016/0027-5107(92)90086-h. PubMed PMID: 1378190.

20. Nascimento É, da Silva SH, Marques Edos R, Roberts DW, Braga GU. Quantification of cyclobutane pyrimidine dimers induced by UVB radiation in conidia of the fungi Aspergillus fumigatus, Aspergillus nidulans, Metarhizium acridum and Metarhizium robertsii. Photochem Photobiol. 2010;86(6):1259-66. doi: 10.1111/j.1751-1097.2010.00793.x. PubMed PMID: 20860693.

21. Fraĭkin G, Belenikina NS, Piniaskina EV, Rubin AB. [New photo-induced effects of reactivation and protection of yeast cells under lethal UVB radiation]. Izv Akad Nauk Ser Biol. 2013(6):754-9. PubMed PMID: 25518562.

22. Zwicker P, Schleusener J, Lohan SB, Busch L, Sicher C, Einfeldt S, Kneissl M, Kühl AA, Keck CM, Witzel C, Kramer A, Meinke MC. Application of 233 nm far-UVC LEDs for eradication of MRSA and MSSA and risk assessment on skin models. Sci Rep. 2022;12(1):2587. doi: 10.1038/s41598-022-06397-z. PubMed PMID: 35173210; PMCID: PMC8850561.

23. Buonanno M, Welch D, Brenner DJ. Exposure of Human Skin Models to KrCl Excimer Lamps: The Impact of Optical Filtering(†). Photochem Photobiol. 2021;97(3):517-23. doi: 10.1111/php.13383. PubMed PMID: 33465817; PMCID: PMC8247880.

24. Lopez-Malo A PE. Ultraviolet Light and Food Preservation. In: Barbosa-Cánovas GV, Tapia, M.S., Cano, M.P., editor. Novel food processing technologies: CRC Press; 2005. p. 405–21.

25. Hanamura N, Ohashi H, Morimoto Y, Igarashi T, Tabata Y. Viability evaluation of layered cell sheets after ultraviolet light irradiation of 222 nm. Regen Ther. 2020;14:344-51. doi: 10.1016/j.reth.2020.04.002. PubMed PMID: 32490060; PMCID: PMC7260610.

26. Araujo R, Rodrigues AG. Variability of germinative potential among pathogenic species of Aspergillus. J Clin Microbiol. 2004;42(9):4335-7. doi: 10.1128/jcm.42.9.4335-4337.2004. PubMed PMID: 15365039; PMCID: PMC516339.

27. Baker SE. Aspergillus niger genomics: past, present and into the future. Med Mycol. 2006;44 Suppl 1:S17-21. doi: 10.1080/13693780600921037. PubMed PMID: 17050415.

28. Li K, Zhu X, Qiao C, Zhang L, Gao W, Wang Y. The Gray Mold Spore Detection of Cucumber Based on Microscopic Image and Deep Learning. Plant Phenomics. 2023;5:0011. doi: 10.34133/plantphenomics.0011. PubMed PMID: 36930758; PMCID: PMC10013786.

29. Lemons AR, McClelland TL, Martin SB, Jr., Lindsley WG, Green BJ. Inactivation of the multi-drug resistant pathogen Candida auris using ultraviolet germicidal irradiation (UVGI). J Hosp Infect. 2020. doi: 10.1016/j.jhin.2020.04.011. PubMed PMID: 32283175; PMCID: PMC7748379.

30. Busbee DL, Sarachek A. Inactivation of Candida albicans by ultraviolet radiation. Arch Mikrobiol. 1969;64(4):289-314. doi: 10.1007/bf00417011. PubMed PMID: 5386170.

31. Clauss M SA, Hartung J. Ultraviolet disinfection with 222 nm wavelength—new options to inactivate UV-resistant pathogens. Proceedings of the 14th ISAH Congress: International Society for Animal Hygiene; 2009. p. 740-2.

32. Narita K, Asano K, Naito K, Ohashi H, Sasaki M, Morimoto Y, Igarashi T, Nakane A. 222-nm UVC inactivates a wide spectrum of microbial pathogens. J Hosp Infect. 2020. doi: 10.1016/j.jhin.2020.03.030. PubMed PMID: 32243946.

33. Dai T, Kharkwal GB, Zhao J, St Denis TG, Wu Q, Xia Y, Huang L, Sharma SK, d’Enfert C, Hamblin MR. Ultraviolet-C light for treatment of Candida albicans burn infection in mice. Photochem Photobiol. 2011;87(2):342-9. doi: 10.1111/j.1751-1097.2011.00886.x. PubMed PMID: 21208209; PMCID: PMC3048910.

34. Saprykina MN, Samsoni-Todorov AO, Todorov VV. The decontamination effect of UV radiation with respect to micromycetes. Journal of Water Chemistry and Technology. 2009;31(5):329-33. doi: 10.3103/S1063455X09050099.

35. Mariita RM, Davis JH, Lottridge MM, Randive RV. Shining light on multi-drug resistant Candida auris: Ultraviolet-C disinfection, wavelength sensitivity, and prevention of biofilm formation of an emerging yeast pathogen. Microbiologyopen. 2022;11(1):e1261. doi: 10.1002/mbo3.1261. PubMed PMID: 35212481; PMCID: PMC8767514.

36. Pereira VJ, Ricardo J, Galinha R, Benoliel MJ, Barreto Crespo MT. Occurrence and low pressure ultraviolet inactivation of yeasts in real water sources. Photochem Photobiol Sci. 2013;12(4):626-30. doi: 10.1039/c2pp25225b. PubMed PMID: 23001236.

37. Severin BF, Suidan MT, Engelbrecht RS. Kinetic modeling of U.V. disinfection of water. Water Research. 1983;17(11):1669-78. doi: 10.1016/0043-1354(83)90027-1.

38. Fraikin GY, Pospelov ME, Rubin LB. Repair of 313-NM induced lesions and photoprotection in yeast Candida guilliermondii. Photochem Photobiol. 1977;26(4):371-5. doi: 10.1111/j.1751-1097.1977.tb07499.x. PubMed PMID: 594172.

39. Azar Daryany MK, Massudi R, Hosseini M. Photoinactivation of Escherichia coli and Saccharomyces cerevisiae suspended in phosphate-buffered saline-A using 266- and 355-nm pulsed ultraviolet light. Curr Microbiol. 2008;56(5):423-8. doi: 10.1007/s00284-008-9110-3. PubMed PMID: 18259813.

40. Petin VG, Zhurakovskaya GP, Komarova LN. Fluence rate as a determinant of synergistic interaction under simultaneous action of UV light and mild heat in Saccharomyces cerevisiae. J Photochem Photobiol B. 1997;38(2-3):123-8. doi: 10.1016/s1011-1344(96)07449-0. PubMed PMID: 9203373.

41. Sommer R, Haider T, Cabaj A, Heidenreich E, Kundi M. Increased inactivation of Saccharomyces cerevisiae by protraction of UV irradiation. Applied and Environmental Microbiology. 1996;62(6):1977-83. doi: 10.1128/aem.62.6.1977-1983.1996.

42. Kim JK, Petin VG, Tkhabisimova MD. Survival and recovery of yeast cells after simultaneous treatment of UV light radiation and heat. Photochem Photobiol. 2004;79(4):349-55. doi: 10.1562/2003-11-21-ra.1. PubMed PMID: 15137512.

43. Watanabe M, Masaki H, Mori T, Tsuchiya T, Konuma H, Hara-Kudo Y, Takatori K. Inactivation effects of UV irradiation and ozone treatment on the yeast and the mold in mineral water. J Food Prot. 2010;73(8):1537-42. doi: 10.4315/0362-028x-73.8.1537. PubMed PMID: 20819369.

44. Kiefer J. The effect of caffeine on survival of UV-irradiated diploid yeast strains of different sensitivities. Mutat Res. 1975;30(3):317-26. PubMed PMID: 1105164.

45. Latorre BA, Rojas S, Díaz GA, Chuaqui H. Germicidal effect of UV light on epiphytic fungi isolated from blueberry. Ciencia E Investigacion Agraria. 2012;39(3):473-80. doi: 10.4067/s0718-16202012000300007. PubMed PMID: WOS:000313400900007.

46. Clauß M. Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength. Acta hydrochimica et hydrobiologica. 2006;34(6):525-32. doi: 10.1002/aheh.200600650.

47. Taylor-Edmonds L, Lichi T, Rotstein-Mayer A, Mamane H. The impact of dose, irradiance and growth conditions on Aspergillus niger (renamed A. brasiliensis) spores low-pressure (LP) UV inactivation. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(4):341-7. doi: 10.1080/10934529.2015.987519. PubMed PMID: 25723059.

48. Wan Q, Wen G, Cao R, Zhao H, Xu X, Xia Y, Wu G, Lin W, Wang J, Huang T. Simultaneously enhance the inactivation and inhibit the photoreactivation of fungal spores by the combination of UV-LEDs and chlorine: Kinetics and mechanisms. Water Res. 2020;184:116143. doi: 10.1016/j.watres.2020.116143. PubMed PMID: 32688151.

49. Wan Q, Wen G, Cao R, Xu X, Zhao H, Li K, Wang J, Huang T. Comparison of UV-LEDs and LPUV on inactivation and subsequent reactivation of waterborne fungal spores. Water Res. 2020;173:115553. doi: 10.1016/j.watres.2020.115553. PubMed PMID: 32028247.

50. Nourmoradi H, Nikaeen M, Stensvold CR, Mirhendi H. Ultraviolet irradiation: An effective inactivation method of Aspergillus spp. in water for the control of waterborne nosocomial aspergillosis. Water Res. 2012;46(18):5935-40. doi: 10.1016/j.watres.2012.08.015. PubMed PMID: 22985523.

51. Sisti M, Schiavano GF, Santi M, Brandi G. Ultraviolet germicidal irradiation in tap water contaminated by Aspergillus spp. J Prev Med Hyg. 2017;58(4):E315-e9. doi: 10.15167/2421-4248/jpmh2017.58.4.777. PubMed PMID: 29707663; PMCID: PMC5912791.

52. Memic S, Kaple CE, Cadnum JL, Donskey CJ. Evaluation of an Automated Wall-mounted Far Ultraviolet-C Light Technology for Continuous or Intermittent Decontamination of Candida auris on Surfaces. Pathog Immun. 2024;9(1):156-67. doi: 10.20411/pai.v9i1.683. PubMed PMID: 38779368; PMCID: PMC11110956.

53. Scoppettuolo G, Donato C, De Carolis E, Vella A, Vaccaro L, La Greca A, Fantoni M. Candida utilis catheter-related bloodstream infection. Med Mycol Case Rep. 2014;6:70-2. doi: 10.1016/j.mmcr.2014.10.003. PubMed PMID: 25473600; PMCID: PMC4246400.

54. Buerth C, Heilmann CJ, Klis FM, de Koster CG, Ernst JF, Tielker D. Growth-dependent secretome of Candida utilis. Microbiology (Reading). 2011;157(Pt 9):2493-503. doi: 10.1099/mic.0.049320-0. PubMed PMID: 21680638.

55. Buerth C, Tielker D, Ernst JF. Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications. Appl Microbiol Biotechnol. 2016;100(16):6981-90. doi: 10.1007/s00253-016-7700-8. PubMed PMID: 27357226.

56. Papon N, Savini V, Lanoue A, Simkin AJ, Crèche J, Giglioli-Guivarc’h N, Clastre M, Courdavault V, Sibirny AA. Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Curr Genet. 2013;59(3):73-90. doi: 10.1007/s00294-013-0391-0. PubMed PMID: 23616192.

57. Savini V, Catavitello C, Onofrillo D, Masciarelli G, Astolfi D, Balbinot A, Febbo F, D’Amario C, D’Antonio D. What do we know about Candida guilliermondii? A voyage throughout past and current literature about this emerging yeast. Mycoses. 2011;54(5):434-41. doi: 10.1111/j.1439-0507.2010.01960.x. PubMed PMID: 21039941.

58. Regina Alvares Da Silva Lira I, Mendes Da Silva Santos E, Paredes Selva Filho AA, Bronzo Barbosa Farias C, Medeiros Campos Guerra J, Asfora Sarubbo L, Moura De Luna J. - Biosurfactant Production from Candida Guilliermondii and Evaluation of Its Toxicity2020.

59. Singh H, Bhardwaj SK, Khatri M, Kim K-H, Bhardwaj N. UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chemical Engineering Journal. 2021;417:128084. doi: 10.1016/j.cej.2020.128084.

60. Jeong YJ, Ha JW. Simultaneous Effects of UV-A and UV-B Irradiation on the Survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in Buffer Solution and Apple Juice. J Food Prot. 2019;82(12):2065-70. doi: 10.4315/0362-028x.Jfp-19-131. PubMed PMID: 31714805.

61. Myers E, Kheradmand S, Miller R. An Update on Narrowband Ultraviolet B Therapy for the Treatment of Skin Diseases. Cureus. 2021;13(11):e19182. doi: 10.7759/cureus.19182. PubMed PMID: 34873522; PMCID: PMC8634827.

62. Schleusener J, Lohan SB, Busch L, Ghoreschi K, Ploch NL, May S, Vogel S, Eberle J, Meinke MC. Treatment of the Candida subspecies Candida albicans and Candida parapsilosis with two far-UVC sources to minimise mycoses in clinical practice. Mycoses. 2023;66(1):25-8. doi: 10.1111/myc.13521. PubMed PMID: 35986595.