Defining the Effects of PKC Modulator HIV Latency-Reversing Agents on Natural Killer Cells

Main Article Content

Melanie Dimapasoc
Jose A. Moran
Steve W. Cole
Alok Ranjan
Rami Hourani
Jocelyn T. Kim
Paul A. Wender
Matthew D. Marsden
Jerome A. Zack

Abstract

Background: Latency reversing agents (LRAs) such as protein kinase C (PKC) modulators can reduce rebound-competent HIV reservoirs in small animal models. Furthermore, administration of natural killer (NK) cells following LRA treatment improves this reservoir reduction. It is currently unknown why the combination of a PKC modulator and NK cells is so potent and whether exposure to PKC modulators may augment NK cell function in some way.


Methods: Primary human NK cells were treated with PKC modulators (bryostatin-1, prostratin, or the designed, synthetic bryostatin-1 analog SUW133), and evaluated by examining expression of activation markers by flow cytometry, analyzing transcriptomic profiles by RNA sequencing, measuring cytotoxicity by co-culturing with K562 cells, assessing cytokine production by Luminex assay, and examining the ability of cytokines and secreted factors to independently reverse HIV latency by co-culturing with Jurkat-Latency (J-Lat) cells.


Results: PKC modulators increased expression of proteins involved in NK cell activation. Transcriptomic profiles from PKC-treated NK cells displayed signatures of cellular activation and enrichment of genes associated with the NFκB pathway. NK cell cytotoxicity was unaffected by prostratin but significantly decreased by bryostatin-1 and SUW133. Cytokines from PKC-stimulated NK cells did not induce latency reversal in J-Lat cell lines. 


Conclusions: Although PKC modulators have some significant effects on NK cells, their contribution in “kick and kill” strategies is likely due to upregulating HIV expression in CD4+ T cells, not directly enhancing the effector functions of NK cells. This suggests that PKC modulators are primarily augmenting the “kick” rather than the “kill” arm of this HIV cure approach.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

1. WHO | HIV & AIDS. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids.

2. Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, Siliciano RF. In vivo fate of HIV-1-infected T cells: Quantitative analysis of the transition to stable latency. Nat Med. 1995;1:1284-90. doi: 10.1038/nm1295-1284. PubMed PMID: 7489410.

DOI: https://doi.org/10.1038/nm1295-1284

3. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A 1997;94:13193-7. doi: 10.1073/pnas.94.24.13193. PubMed PMID: 9371822; PMCID: PMC24285.

DOI: https://doi.org/10.1073/pnas.94.24.13193

4. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF. Identification of a Reservoir for HIV-1 in Patients on Highly Active Antiretroviral Therapy. Science. 1997;278:1295-300. doi: 10.1126/science.278.5341.1295. PubMed PMID: 9360927.

DOI: https://doi.org/10.1126/science.278.5341.1295

5. Wong JK, Hezareh M, Günthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD. Recovery of Replication-Competent HIV Despite Prolonged Suppression of Plasma Viremia. Science. 1997;278:1291-5. doi: 10.1126/science.278.5341.1291. PubMed PMID: 9360926.

DOI: https://doi.org/10.1126/science.278.5341.1291

6. Hirsch MS, Conway B, D’Aquila RT, Johnson VA, Brun-Vézinet F, Clotet B, Demeter LM, Hammer SM, Jacobsen DM, Kuritzkes DR, Loveday C, Mellors JW, Vella S, Richman DD. Antiretroviral Drug Resistance Testing in Adults With HIV Infection. JAMA. 1998;279:1984-91. doi: 10.1001/jama.279.24.1984. PubMed PMID: 9643863.

DOI: https://doi.org/10.1001/jama.279.24.1984

7. Orrell C. Antiretroviral Adherence in a Resource-poor Setting. Curr HIV/AIDS Rep. 2005;2:171-6. doi: 10.1007/s11904-005-0012-8. PubMed PMID: 16343374.

DOI: https://doi.org/10.1007/s11904-005-0012-8

8. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, Boucher G, Boulassel MR, Ghattas G, Brenchley JM, Schacker TW, Hill BJ, Douek DC, Routy JP, Haddad EK, Sekaly RP. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893-900. Epub 20090621. doi: 10.1038/nm.1972. PubMed PMID: 19543283; PMCID: PMC2859814.

DOI: https://doi.org/10.1038/nm.1972

9. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C, Quinn TC, Chaisson RE, Rosenberg E, Walker B, Gange S, Gallant J, Siliciano RF. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5(5):512-7. doi: 10.1038/8394. PubMed PMID: 10229227.

DOI: https://doi.org/10.1038/8394

10. Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 Entry into Quiescent Primary Lymphocytes: Molecular Analysis Reveals a Labile, Latent Viral Structure. Cell. 1990;61(2):213-22. doi: 10.1016/0092-8674(90)90802-l. PubMed PMID: 2331748.

DOI: https://doi.org/10.1016/0092-8674(90)90802-L

11. Aubert M, Ryu BY, Banks L, Rawlings DJ, Scharenberg AM, Jerome KR. Successful targeting and disruption of an integrated reporter lentivirus using the engineered homing endonuclease Y2 I-AniI. PLoS One. 2011;6(2):e16825. Epub 20110209. doi: 10.1371/journal.pone.0016825. PubMed PMID: 21399673; PMCID: PMC3036713.

DOI: https://doi.org/10.1371/journal.pone.0016825

12. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510. doi: 10.1038/srep02510. PubMed PMID: 23974631; PMCID: PMC3752613.

DOI: https://doi.org/10.1038/srep02510

13. Qu X, Wang P, Ding D, Li L, Wang H, Ma L, Zhou X, Liu S, Lin S, Wang X, Zhang G, Liu S, Liu L, Wang J, Zhang F, Lu D, Zhu H. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res. 2013;41(16):7771-82. Epub 20130626. doi: 10.1093/nar/gkt571. PubMed PMID: 23804764; PMCID: PMC3763554.

DOI: https://doi.org/10.1093/nar/gkt571

14. Sarkar I, Hauber I, Hauber J, Buchholz F. HIV-1 Proviral DNA Excision Using an Evolved Recombinase. Science. 2007;316(5833):1912-5. doi: 10.1126/science.1141453. PubMed PMID: 17600219.

DOI: https://doi.org/10.1126/science.1141453

15. Kessing CF, Nixon CC, Li C, Tsai P, Takata H, Mousseau G, Ho PT, Honeycutt JB, Fallahi M, Trautmann L, Garcia JV, Valente ST. In Vivo Suppression of HIV Rebound by Didehydro-Cortistatin A, a “Block-and-Lock” Strategy for HIV-1 Treatment. Cell Rep. 2017;21(3):600-11. doi: 10.1016/j.celrep.2017.09.080. PubMed PMID: 29045830; PMCID: PMC5653276.

DOI: https://doi.org/10.1016/j.celrep.2017.09.080

16. Kumar R, Qureshi H, Deshpande S, Bhattacharya J. Broadly neutralizing antibodies in HIV-1 treatment and prevention. Ther Adv Vaccines Immunother. 2018;6(4):61-8. Epub 20181012. doi: 10.1177/2515135518800689. PubMed PMID: 30345419; PMCID: PMC6187420.

DOI: https://doi.org/10.1177/2515135518800689

17. Macedo AB, Novis CL, Bosque A. Targeting Cellular and Tissue HIV Reservoirs With Toll-Like Receptor Agonists. Front Immunol. 2019;10:2450. Epub 20191015. doi: 10.3389/fimmu.2019.02450. PubMed PMID: 31681325; PMCID: PMC6804373.

18. Roberts MR, Qin L, Zhang D, Smith DH, Tran AC, Dull TJ, Groopman JE, Capon DJ, Byrn RA, Finer MH. Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood. 1994;84(9):2878-89. doi: 10.1182/blood.V84.9.2878.2878. PubMed PMID: 7949163.

DOI: https://doi.org/10.1182/blood.V84.9.2878.bloodjournal8492878

19. Stephenson KE. Therapeutic vaccination for HIV: hopes and challenges. Curr Opin HIV AIDS. 2018;13(5):408-15. doi: 10.1097/COH.0000000000000491. PubMed PMID: 29957615.

DOI: https://doi.org/10.1097/COH.0000000000000491

20. Stephenson KE, Barouch DH. Broadly Neutralizing Antibodies for HIV Eradication. Curr HIV/AIDS Rep. 2016;13(1):31-7. doi: 10.1007/s11904-016-0299-7. PubMed PMID: 26841901; PMCID: PMC4779134.

DOI: https://doi.org/10.1007/s11904-016-0299-7

21. Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018;18(2):91-104. Epub 20171009. doi: 10.1038/nri.2017.112. PubMed PMID: 28990586; PMCID: PMC5991909.

DOI: https://doi.org/10.1038/nri.2017.112

22. Yang OO, Tran AC, Kalams SA, Johnson RP, Roberts MR, Walker BD. Lysis of HIV-1-infected cells and inhibition of viral replication by universal receptor T cells. Proc Natl Acad Sci USA. 1997;94:11478–83. doi: 10.1073/pnas.94.21.11478. PubMed PMID: 9326635; PMCID: PMC23511.

DOI: https://doi.org/10.1073/pnas.94.21.11478

23. Campbell GR, Bruckman RS, Chu YL, Trout RN, Spector SA. SMAC Mimetics Induce Autophagy-Dependent Apoptosis of HIV-1-Infected Resting Memory CD4+ T Cells. Cell Host Microbe. 2018;24(5):689-702 e7. Epub 20181018. doi: 10.1016/j.chom.2018.09.007. PubMed PMID: 30344003; PMCID: PMC6250054.

DOI: https://doi.org/10.1016/j.chom.2018.09.007

24. Cummins NW, Sainski-Nguyen AM, Natesampillai S, Aboulnasr F, Kaufmann S, Badley AD. Maintenance of the HIV Reservoir Is Antagonized by Selective BCL2 Inhibition. J Virol. 2017;91(11). Epub 20170512. doi: 10.1128/JVI.00012-17. PubMed PMID: 28331083; PMCID: PMC5432861.

DOI: https://doi.org/10.1128/JVI.00012-17

25. Lucas A, Kim Y, Rivera-Pabon O, Chae S, Kim DH, Kim B. Targeting the PI3K/Akt cell survival pathway to induce cell death of HIV-1 infected macrophages with alkylphospholipid compounds. PLoS One. 2010;5(9). Epub 20100930. doi: 10.1371/journal.pone.0013121. PubMed PMID: 20927348; PMCID: PMC2948033.

DOI: https://doi.org/10.1371/journal.pone.0013121

26. Marsden MD, Zack JA. Experimental Approaches for Eliminating Latent HIV. For Immunopathol Dis Therap. 2015;6(1-2):91-9. doi: 10.1615/forumimmundisther.2016015242. PubMed PMID: 28191361; PMCID: PMC5302864.

DOI: https://doi.org/10.1615/ForumImmunDisTher.2016015242

27. Marsden MD, Zack JA. HIV cure strategies: a complex approach for a complicated viral reservoir? Future Virology. 2019;14(1):5-8. doi: 10.2217/fvl-2018-0205.

DOI: https://doi.org/10.2217/fvl-2018-0205

28. Kim Y, Anderson JL, Lewin SR. Getting the “Kill” into “Shock and Kill”: Strategies to Eliminate Latent HIV. Cell Host Microbe. 2018;23(1):14-26. doi: 10.1016/j.chom.2017.12.004. PubMed PMID: 29324227; PMCID: PMC5990418.

DOI: https://doi.org/10.1016/j.chom.2017.12.004

29. Sadowski I, Hashemi FB. Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci. 2019;76(18):3583-600. Epub 20190525. doi: 10.1007/s00018-019-03156-8. PubMed PMID: 31129856; PMCID: PMC6697715.

DOI: https://doi.org/10.1007/s00018-019-03156-8

30. Spivak AM, Planelles V. Novel Latency Reversal Agents for HIV-1 Cure. Annu Rev Med. 2018;69:421-36. Epub 20171103. doi: 10.1146/annurev-med-052716-031710. PubMed PMID: 29099677; PMCID: PMC5892446.

DOI: https://doi.org/10.1146/annurev-med-052716-031710

31. Baxter AE, Niessl J, Fromentin R, Richard J, Porichis F, Charlebois R, Massanella M, Brassard N, Alsahafi N, Delgado GG, Routy JP, Walker BD, Finzi A, Chomont N, Kaufmann DE. Single-Cell Characterization of Viral Translation-Competent Reservoirs in HIV-Infected Individuals. Cell Host Microbe. 2016;20(3):368-80. Epub 20160818. doi: 10.1016/j.chom.2016.07.015. PubMed PMID: 27545045; PMCID: PMC5025389.

DOI: https://doi.org/10.1016/j.chom.2016.07.015

32. Beans EJ, Fournogerakis D, Gauntlett C, Heumann LV, Kramer R, Marsden MD, Murray D, Chun TW, Zack JA, Wender PA. Highly potent, synthetically accessible prostratin analogs induce latent HIV expression in vitro and ex vivo. Proc Natl Acad Sci U S A. 2013;110(29):11698-703. Epub 20130628. doi: 10.1073/pnas.1302634110. PubMed PMID: 23812750; PMCID: PMC3718093.

DOI: https://doi.org/10.1073/pnas.1302634110

33. Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med. 2014;20(4):425-9. Epub 20140323. doi: 10.1038/nm.3489. PubMed PMID: 24658076; PMCID: PMC3981911.

DOI: https://doi.org/10.1038/nm.3489

34. Darcis G, Kula A, Bouchat S, Fujinaga K, Corazza F, Ait-Ammar A, Delacourt N, Melard A, Kabeya K, Vanhulle C, Van Driessche B, Gatot JS, Cherrier T, Pianowski LF, Gama L, Schwartz C, Vila J, Burny A, Clumeck N, Moutschen M, De Wit S, Peterlin BM, Rouzioux C, Rohr O, Van Lint C. An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression. PLoS Pathog. 2015;11(7):e1005063. Epub 20150730. doi: 10.1371/journal.ppat.1005063. PubMed PMID: 26225566; PMCID: PMC4520688.

DOI: https://doi.org/10.1371/journal.ppat.1005063

35. DeChristopher BA, Loy BA, Marsden MD, Schrier AJ, Zack JA, Wender PA. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro. Nat Chem. 2012;4(9):705-10. Epub 20120715. doi: 10.1038/nchem.1395. PubMed PMID: 22914190; PMCID: PMC3428736.

DOI: https://doi.org/10.1038/nchem.1395

36. Jiang G, Mendes EA, Kaiser P, Wong DP, Tang Y, Cai I, Fenton A, Melcher GP, Hildreth JE, Thompson GR, Wong JK, Dandekar S. Synergistic Reactivation of Latent HIV Expression by Ingenol-3-Angelate, PEP005, Targeted NF-kB Signaling in Combination with JQ1 Induced p-TEFb Activation. PLoS Pathog. 2015;11(7):e1005066. Epub 20150730. doi: 10.1371/journal.ppat.1005066. PubMed PMID: 26225771; PMCID: PMC4520526.

DOI: https://doi.org/10.1371/journal.ppat.1005066

37. Kinter AL, Poli G, Maury W, Folks TM, Fauci AS. Direct and cytokine-mediated activation of protein kinase C induces human immunodeficiency virus expression in chronically infected promonocytic cells. J Virol 1990;64(9):4306-12. doi: 10.1128/JVI.64.9.4306-4312.1990. PubMed PMID: 2200885; PMCID: PMC247897.

DOI: https://doi.org/10.1128/jvi.64.9.4306-4312.1990

38. Marsden MD, Loy BA, Wu X, Ramirez CM, Schrier AJ, Murray D, Shimizu A, Ryckbosch SM, Near KE, Chun TW, Wender PA, Zack JA. In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell “kick” and “kill” in strategy for virus eradication. PLoS Pathog. 2017;13(9):e1006575. Epub 20170921. doi: 10.1371/journal.ppat.1006575. PubMed PMID: 28934369; PMCID: PMC5608406.

DOI: https://doi.org/10.1371/journal.ppat.1006575

39. Pérez M, de Vinuesa AG, Sanchez-Duffhues G, Marquez N, Bellido ML, Muñoz-Fernandez MA, Moreno S, Castor TP, Calzado MA, Muñoz E. Bryostatin-1 Synergizes with Histone Deacetylase Inhibitors to Reactivate HIV-1 from Latency. Curr HIV Res. 2010;8(6):418-9. doi: 10.2174/157016210793499312. PubMed PMID: 20636281.

DOI: https://doi.org/10.2174/157016210793499312

40. Qatsha KA, Rudolph C, Marmé D, Schächtele C, May WS. Gö 6976, a selective inhibitor of protein kinase C, is a potent antagonist of human immunodeficiency virus 1 induction from latent/low-level-producing reservoir cells in vitro. Proc Natl Acad Sci U S A 1993;90(10):4674-8. doi: 10.1073/pnas.90.10.4674. PubMed PMID: 7685108; PMCID: PMC46575.

DOI: https://doi.org/10.1073/pnas.90.10.4674

41. Williams SA, Chen LF, Kwon H, Fenard D, Bisgrove D, Verdin E, Greene WC. Prostratin antagonizes HIV latency by activating NF-kappaB. J Biol Chem. 2004;279(40):42008-17. Epub 20040728. doi: 10.1074/jbc.M402124200. PubMed PMID: 15284245.

DOI: https://doi.org/10.1074/jbc.M402124200

42. Chuang SS, Lee JK, Mathew PA. Protein kinase C is involved in 2B4 (CD244)-mediated cytotoxicity and AP-1 activation in natural killer cells. Immunology. 2003;109(3):432-9. doi: 10.1046/j.1365-2567.2003.01662.x. PubMed PMID: 12807490; PMCID: PMC1782976.

DOI: https://doi.org/10.1046/j.1365-2567.2003.01662.x

43. Ito M, Tanabe F, Sato A, Takami Y, Shigeta S. A potent inhibitor of protein kinase C inhibits natural killer activity. Int J Immunopharmacol 1988;10:211-6. doi: 10.1016/0192-0561(88)90051-3. PubMed PMID: 3182150.

44. Tassi I, Cella M, Presti R, Colucci A, Gilfillan S, Littman DR, Colonna M. NK cell-activating receptors require PKC-theta for sustained signaling, transcriptional activation, and IFN-gamma secretion. Blood. 2008;112(10):4109-16. Epub 20080910. doi: 10.1182/blood-2008-02-139527. PubMed PMID: 18784374; PMCID: PMC2581989.

DOI: https://doi.org/10.1182/blood-2008-02-139527

45. Gulakowski RJ, McMahon JB, Buckheit RWJ, Gustafson KR, Boyd MR. Antireplicative and anticytopathic activities of prostratin, a non-tumor-promoting phorbol ester, against human immunodeficiency virus (HIV). Antiviral Res. 1997;33(2):87-97. doi: 10.1016/s0166-3542(96)01004-2. PubMed PMID: 9021050.

DOI: https://doi.org/10.1016/S0166-3542(96)01004-2

46. Korin YD, Brooks DG, Brown S, Korotzer A, Zack JA. Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J Virol. 2002;76(16):8118-23. doi: 10.1128/jvi.76.16.8118-8123.2002. PubMed PMID: 12134017; PMCID: PMC155166.

DOI: https://doi.org/10.1128/JVI.76.16.8118-8123.2002

47. Kulkosky J, Culnan DM, Roman J, Dornadula G, Schnell M, Boyd MR, Pomerantz RJ. Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood. 2001;98(10):3006-15. doi: 10.1182/blood.v98.10.3006. PubMed PMID: 11698284.

DOI: https://doi.org/10.1182/blood.V98.10.3006

48. Marsden MD, Wu X, Navab SM, Loy BA, Schrier AJ, DeChristopher BA, Shimizu AJ, Hardman CT, Ho S, Ramirez CM, Wender PA, Zack JA. Characterization of designed, synthetically accessible bryostatin analog HIV latency reversing agents. Virology. 2018;520:83-93. Epub 20180526. doi: 10.1016/j.virol.2018.05.006. PubMed PMID: 29800728; PMCID: PMC6018613.

DOI: https://doi.org/10.1016/j.virol.2018.05.006

49. Desimio MG, Giuliani E, Ferraro AS, Adorno G, Doria M. In Vitro Exposure to Prostratin but Not Bryostatin-1 Improves Natural Killer Cell Functions Including Killing of CD4(+) T Cells Harboring Reactivated Human Immunodeficiency Virus. Front Immunol. 2018;9:1514. Epub 20180629. doi: 10.3389/fimmu.2018.01514. PubMed PMID: 30008723; PMCID: PMC6033996.

DOI: https://doi.org/10.3389/fimmu.2018.01514

50. Gutierrez C, Serrano-Villar S, Madrid-Elena N, Perez-Elias MJ, Martin ME, Barbas C, Ruiperez J, Munoz E, Munoz-Fernandez MA, Castor T, Moreno S. Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS. 2016;30(9):1385-92. doi: 10.1097/QAD.0000000000001064. PubMed PMID: 26891037.

DOI: https://doi.org/10.1097/QAD.0000000000001064

51. Schaufelberger DE, Koleck MP, Beutler JA, Vatakis AM, Alvarado AB, Andrews P, Marzo LV, Muschik GM, Roach J, Ross JT. The large-scale isolation of bryostatin 1 from Bugula neritina following current good manufacturing practices. J Nat Prod. 1991;54(5):1265-70. doi: 10.1021/np50077a004. PubMed PMID: 1800630.

DOI: https://doi.org/10.1021/np50077a004

52. Sloane JL, Benner NL, Keenan KN, Zang X, Soliman MSA, Wu X, Dimapasoc M, Chun TW, Marsden MD, Zack JA, Wender PA. Prodrugs of PKC modulators show enhanced HIV latency reversal and an expanded therapeutic window. Proc Natl Acad Sci U S A. 2020;117(20):10688-98. Epub 20200505. doi: 10.1073/pnas.1919408117. PubMed PMID: 32371485; PMCID: PMC7245087.

DOI: https://doi.org/10.1073/pnas.1919408117

53. Wender PA, Donnelly AC, Loy BA, Near KE, Staveness D. Rethinking the role of natural products: Function-oriented synthesis, bryostatin, and bryologs. In: Hanessian S, editor. Natural Products in Medicinal Chemistry. Weinheim, Germany: Wiley-VCH; 2015. p. 473–544.

DOI: https://doi.org/10.1002/9783527676545.ch14

54. Wender PA, Hardman CT, Ho S, Jeffreys MS, Maclaren JK, Quiroz RV, Ryckbosch SM, Shimizu AJ, Sloane JL, Stevens MC. Scalable synthesis of bryostatin 1 and analogs, adjuvant leads against latent HIV. Science. 2017;358:218–23. doi: 10.1126/science.aan7969. PubMed PMID: 29026042; PMCID: PMC5714505.

DOI: https://doi.org/10.1126/science.aan7969

55. Wender PA, Kee JM, Warrington JM. Practical synthesis of prostratin, DPP, and their analogs, adjuvant leads against latent HIV. Science. 2008;320(5876):649-52. doi: 10.1126/science.1154690. PubMed PMID: 18451298; PMCID: PMC2704988.

DOI: https://doi.org/10.1126/science.1154690

56. Wender PA, Quiroz RV, Stevens MC. Function through synthesis-informed design. Acc Chem Res. 2015;48(3):752-60. Epub 20150305. doi: 10.1021/acs.accounts.5b00004. PubMed PMID: 25742599; PMCID: PMC4415040.

DOI: https://doi.org/10.1021/acs.accounts.5b00004

57. Marsden MD, Zhang TH, Du Y, Dimapasoc M, Soliman MSA, Wu X, Kim JT, Shimizu A, Schrier A, Wender PA, Sun R, Zack JA. Tracking HIV Rebound following Latency Reversal Using Barcoded HIV. Cell Rep Med. 2020;1(9):100162. Epub 20201222. doi: 10.1016/j.xcrm.2020.100162. PubMed PMID: 33377133; PMCID: PMC7762775.

DOI: https://doi.org/10.1016/j.xcrm.2020.100162

58. Kim JT, Zhang TH, Carmona C, Lee B, Seet CS, Kostelny M, Shah N, Chen H, Farrell K, Soliman MSA, Dimapasoc M, Sinani M, Blanco KYR, Bojorquez D, Jiang H, Shi Y, Du Y, Komarova NL, Wodarz D, Wender PA, Marsden MD, Sun R, Zack JA. Latency reversal plus natural killer cells diminish HIV reservoir in vivo. Nat Commun. 2022;13(1):121. Epub 20220110. doi: 10.1038/s41467-021-27647-0. PubMed PMID: 35013215; PMCID: PMC8748509.

59. Moran JA, Ranjan A, Hourani R, Kim JT, Wender PA, Zack JA, Marsden MD. Secreted factors induced by PKC modulators do not indirectly cause HIV latency reversal. Virology. 2023;581:8-14. Epub 20230216. doi: 10.1016/j.virol.2023.02.009. PubMed PMID: 36842270; PMCID: PMC10103183.

DOI: https://doi.org/10.1016/j.virol.2023.02.009

60. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. Epub 20121025. doi: 10.1093/bioinformatics/bts635. PubMed PMID: 23104886; PMCID: PMC3530905.

DOI: https://doi.org/10.1093/bioinformatics/bts635

61. Partek® Flow® software. 7.0 ed. St. Louis, MO, USA: Partek Inc.; 2019.

62. Hulsen T, de Vlieg J, Alkema W. BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics. 2008;9:488. Epub 20081016. doi: 10.1186/1471-2164-9-488. PubMed PMID: 18925949; PMCID: PMC2584113.

DOI: https://doi.org/10.1186/1471-2164-9-488

63. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. Epub 20190403. doi: 10.1038/s41467-019-09234-6. PubMed PMID: 30944313; PMCID: PMC6447622.

64. Biancotto A, Grivel JC, Gondois-Rey F, Bettendroffer L, Vigne R, Brown S, Margolis LB, Hirsch I. Dual role of prostratin in inhibition of infection and reactivation of human immunodeficiency virus from latency in primary blood lymphocytes and lymphoid tissue. J Virol. 2004;78(19):10507-15. doi: 10.1128/JVI.78.19.10507-10515.2004. PubMed PMID: 15367617; PMCID: PMC516376.

DOI: https://doi.org/10.1128/JVI.78.19.10507-10515.2004

65. Trushin SA, Bren GD, Asin S, Pennington KN, Paya CV, Badley AD. Human immunodeficiency virus reactivation by phorbol esters or T-cell receptor ligation requires both PKCalpha and PKCtheta. J Virol. 2005;79(15):9821-30. doi: 10.1128/JVI.79.15.9821-9830.2005. PubMed PMID: 16014943; PMCID: PMC1181554.

DOI: https://doi.org/10.1128/JVI.79.15.9821-9830.2005

66. Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997;15:749-95. doi: 10.1146/annurev.immunol.15.1.749. PubMed PMID: 9143706.

DOI: https://doi.org/10.1146/annurev.immunol.15.1.749

67. Cobos Jimenez V, Booiman T, de Taeye SW, van Dort KA, Rits MA, Hamann J, Kootstra NA. Differential expression of HIV-1 interfering factors in monocyte-derived macrophages stimulated with polarizing cytokines or interferons. Sci Rep. 2012;2:763. Epub 20121023. doi: 10.1038/srep00763. PubMed PMID: 23094138; PMCID: PMC3478582.

DOI: https://doi.org/10.1038/srep00763

68. Frucht DM, Fukao T, Bogdan C, Schindler H, O’Shea JJ, Koyasu S. IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol 2001;22(10):556-60. doi: 10.1016/s1471-4906(01)02005-1. PubMed PMID: 11574279.

DOI: https://doi.org/10.1016/S1471-4906(01)02005-1

69. Harris DP, Goodrich S, Gerth AJ, Peng SL, Lund FE. Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol. 2005;174(11):6781-90. doi: 10.4049/jimmunol.174.11.6781. PubMed PMID: 15905519.

DOI: https://doi.org/10.4049/jimmunol.174.11.6781

70. Koirala J, Adamski A, Koch L, Stueber D, El-Azizi M, Khardori NM, Ghassemi M, Novak RM. Interferon-gamma receptors in HIV-1 infection. AIDS Res Hum Retroviruses. 2008;24(8):1097-102. doi: 10.1089/aid.2007.0261. PubMed PMID: 18620489.

DOI: https://doi.org/10.1089/aid.2007.0261

71. Spellberg B, Edwards JEJ. Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis 2001;32(1):76-102. doi: 10.1086/317537. PubMed PMID: 11118387.

DOI: https://doi.org/10.1086/317537

72. Aliberti J, Reis e Sousa C, Schito M, Hieny S, Wells T, Huffnagle GB, Sher A. CCR5 provides a signal for microbial induced production of IL-12 by CD8 alpha+ dendritic cells. Nat Immunol. 2000;1(1):83-7. doi: 10.1038/76957. PubMed PMID: 10881180.

DOI: https://doi.org/10.1038/76957

73. Karpus WJ, Lukacs NW, Kennedy KJ, Smith WS, Hurst SD, Barrett TA. Differential CC chemokine-induced enhancement of T helper cell cytokine production. J Immunol. 1997;158(9):4129-36. doi: 10.4049/jimmunol.158.9.4129. PubMed PMID: 9126972.

DOI: https://doi.org/10.4049/jimmunol.158.9.4129

74. Zou W, Borvak J, Marches F, Wei S, Galanaud P, Emilie D, Curiel TJ. Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by beta-chemokines rather than IL-12. J Immunol. 2000;165(8):4388-96. doi: 10.4049/jimmunol.165.8.4388. PubMed PMID: 11035076.

DOI: https://doi.org/10.4049/jimmunol.165.8.4388

75. Alkhatib G, Locati M, Kennedy PE, Murphy PM, Berger EA. HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation. Virology. 1997;234(2):340-8. doi: 10.1006/viro.1997.8673. PubMed PMID: 9268166.

DOI: https://doi.org/10.1006/viro.1997.8673

76. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17:657-700. doi: 10.1146/annurev.immunol.17.1.657. PubMed PMID: 10358771.

DOI: https://doi.org/10.1146/annurev.immunol.17.1.657

77. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995;270(5243):1811-5. doi: 10.1126/science.270.5243.1811. PubMed PMID: 8525373.

DOI: https://doi.org/10.1126/science.270.5243.1811

78. Pierson TC, Doms RW. HIV-1 Entry and Its Inhibition. In: Young JAT, editor. Cellular Factors Involved in Early Steps of Retroviral Replication. Germany: Springer Berlin, Heidelberg; 2003. p. 1-27.

DOI: https://doi.org/10.1007/978-3-642-19012-4_1

79. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996;85(7):1135-48. doi: 10.1016/s0092-8674(00)81313-6. PubMed PMID: 8674119.

DOI: https://doi.org/10.1016/S0092-8674(00)81313-6

80. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, E. SR, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996;381(6584):661-6. doi: 10.1038/381661a0. PubMed PMID: 8649511.

DOI: https://doi.org/10.1038/381661a0

81. Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996;85(7):1149-58. doi: 10.1016/s0092-8674(00)81314-8. PubMed PMID: 8674120.

DOI: https://doi.org/10.1016/S0092-8674(00)81314-8

82. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381(6584):667-73. doi: 10.1038/381667a0. PubMed PMID: 8649512.

DOI: https://doi.org/10.1038/381667a0

83. Duh EJ, Maury WJ, Folks TM, Fauci AS, Rabson AB. Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci U S A. 1989;86(15):5974-8. doi: 10.1073/pnas.86.15.5974. PubMed PMID: 2762307; PMCID: PMC297754.

DOI: https://doi.org/10.1073/pnas.86.15.5974

84. Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS. Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci U S A. 1989;86(7):2365-8. doi: 10.1073/pnas.86.7.2365. PubMed PMID: 2784570; PMCID: PMC286913.

DOI: https://doi.org/10.1073/pnas.86.7.2365

85. Griffin GE, Leung K, Folks TM, Kunkel S, Nabel GJ. Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B. Nature. 1989;339(6219):70-3. doi: 10.1038/339070a0. PubMed PMID: 2654643.

DOI: https://doi.org/10.1038/339070a0

86. Mellors JW, Griffith BP, Ortiz MA, Landry ML, Ryan JL. Tumor necrosis factor-alpha/cachectin enhances human immunodeficiency virus type 1 replication in primary macrophages. J Infect Dis 1991;163(1):78-82. doi: 10.1093/infdis/163.1.78. PubMed PMID: 1984479.

DOI: https://doi.org/10.1093/infdis/163.1.78

87. Michihiko S, Yamamoto N, Shinozaki F, Shimada K, Soma G, Kobayashi N. Augmentation of in-vitro HIV replication in peripheral blood mononuclear cells of AIDS and ARC patients by tumour necrosis factor. Lancet. 1989;1(8648):1206-7. doi: 10.1016/s0140-6736(89)92788-8. PubMed PMID: 2566769.

DOI: https://doi.org/10.1016/S0140-6736(89)92788-8

88. Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci U S A. 1989;86(7):2365-8. doi: 10.1073/pnas.86.7.2365. PubMed PMID: 2494664; PMCID: PMC286907.

DOI: https://doi.org/10.1073/pnas.86.7.2336

89. Coffey MJ, Woffendin C, Phare SM, Strieter RM, Markovitz DM. RANTES inhibits HIV-1 replication in human peripheral blood monocytes and alveolar macrophages. Am J Physiol. 1997;252(5):L1025-L9. doi: 10.1152/ajplung.1997.272.5.L1025. PubMed PMID: 9176270.

DOI: https://doi.org/10.1152/ajplung.1997.272.5.L1025

90. McManus CM, Brosnan CF, Berman JW. Cytokine Induction of MIP-1α and MIP-1β in Human Fetal Microglia. J Immunol. 1998;160(3):1449-55. doi: 10.4049/jimmunol.160.3.1449. PubMed PMID: 9570566.

DOI: https://doi.org/10.4049/jimmunol.160.3.1449

91. Simmons G, Clapham PR, Picard L, Offord RE, Rosenkilde MM, Schwartz TW, Buser R, Wells TN, Proudfoot AE. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science. 1997;276(5310):276-9. doi: 10.1126/science.276.5310.276. PubMed PMID: 9092481.

DOI: https://doi.org/10.1126/science.276.5310.276

92. Berthebaud M, Riviere C, Jarrier P, Foudi A, Zhang Y, Compagno D, Galy A, Vainchenker W, Louache F. RGS16 is a negative regulator of SDF-1-CXCR4 signaling in megakaryocytes. Blood. 2005;106(9):2962-8. Epub 20050705. doi: 10.1182/blood-2005-02-0526. PubMed PMID: 15998835.

DOI: https://doi.org/10.1182/blood-2005-02-0526

93. Johnson EN, Seasholtz TM, Waheed AA, Kreutz B, Suzuki N, Kozasa T, Jones TL, Brown JH, Druey KM. RGS16 inhibits signalling through the G alpha 13-Rho axis. Nat Cell Biol. 2003;5(12):1095-103. Epub 20031123. doi: 10.1038/ncb1065. PubMed PMID: 14634662.

DOI: https://doi.org/10.1038/ncb1065

94. Liang G, Bansal G, Xie Z, Druey KM. RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling. J Biol Chem. 2009;284(32):21719-27. Epub 20090609. doi: 10.1074/jbc.M109.028407. PubMed PMID: 19509421; PMCID: PMC2755894.

DOI: https://doi.org/10.1074/jbc.M109.028407

95. Laurence J, Sikder SK, Jhaveri S, Salmon JE. Phorbol ester-mediated induction of HIV-1 from a chronically infected promonocyte clone: blockade by protein kinase inhibitors and relationship to tat-directed trans-activation. Biochem Biophys Res Commun. 1990;166(1):349-57. doi: 10.1016/0006-291X(90)91952-O. PubMed PMID: 2405849.

DOI: https://doi.org/10.1016/0006-291X(90)91952-O

96. Pätzold S, Schneider J, Rudolph C, Marmé D, Schächtele C. Novel indolocarbazole protein kinase C inhibitors prevent reactivation of HIV-1 in latently infected cells. Antiviral Res 1993. 1993;22(4):273-83. doi: 10.1016/0166-3542(93)90037-j. PubMed PMID: 8279816.

DOI: https://doi.org/10.1016/0166-3542(93)90037-J

97. Steffan NM, Bren GD, Frantz B, Tocci MJ, O’Neill EA, Paya CV. Regulation of IkB alpha phosphorylation by PKC- and Ca(2+)-dependent signal transduction pathways. J Immunol. 1995;155(10):4685-91. doi: 10.4049/jimmunol.155.10.4685. PubMed PMID: 7594468.

DOI: https://doi.org/10.4049/jimmunol.155.10.4685

98. Tong-Starkesen SE, Luciw PA, Peterlin BM. Signaling through T lymphocyte surface proteins, TCR/CD3 and CD28, activates the HIV-1 long terminal repeat. J Immunol. 1989;142(2):702-7. doi: 10.4049/jimmunol.142.2.702. PubMed PMID: 2536062.

DOI: https://doi.org/10.4049/jimmunol.142.2.702

99. Garrido C, Spivak AM, Soriano-Sarabia N, Checkley MA, Barker E, Karn J, Planelles V, Margolis DM. HIV Latency-Reversing Agents Have Diverse Effects on Natural Killer Cell Function. Front Immunol. 2016;7:356. Epub 20160921. doi: 10.3389/fimmu.2016.00356. PubMed PMID: 27708642; PMCID: PMC5030263.

DOI: https://doi.org/10.3389/fimmu.2016.00356

100. Robertson MJ, Cameron C, Lazo S, Cochran KJ, Voss SD, Ritz J. Costimulation of human natural killer cell proliferation: role of accessory cytokines and cell contact-dependent signals. Nat Immun 1996;15(5):213-26. PubMed PMID: 9390270.

101. Chun TW, Engel D, Mizell SB, Ehler LA, Fauci AS. Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med. 1998;188(1):83-91. doi: 10.1084/jem.188.1.83. PubMed PMID: 9653086; PMCID: PMC2525548.

DOI: https://doi.org/10.1084/jem.188.1.83

102. Chun TW, Engel D, Mizell SB, Hallahan CW, Fischette M, Park S, Davey RT, Dybul M, Kovacs JA, Metcalf JA, Mican JM, Berrey MM, Corey L, Lane HC, Fauci AS. Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med. 1999;5(6):651-5. doi: 10.1038/9498. PubMed PMID: 10371503.

DOI: https://doi.org/10.1038/9498

103. Rabbi MF, Finnegan A, Al-Harthi L, Song S, Roebuck KA. Interleukin-10 enhances tumor necrosis factor-alpha activation of HIV-1 transcription in latently infected T cells. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;19(4):321-31. doi: 10.1097/00042560-199812010-00002. PubMed PMID: 9833740.

DOI: https://doi.org/10.1097/00042560-199812010-00002

104. Scripture-Adams DD, Brooks DG, Korin YD, Zack JA. Interleukin-7 induces expression of latent human immunodeficiency virus type 1 with minimal effects on T-cell phenotype. J Virol. 2002;76(24):13077-82. doi: 10.1128/jvi.76.24.13077-13082.2002. PubMed PMID: 12438635; PMCID: PMC136703.

DOI: https://doi.org/10.1128/JVI.76.24.13077-13082.2002

105. Jordan A, Bisgrove D, Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 2003;22(8):1868-77. doi: 10.1093/emboj/cdg188. PubMed PMID: 12682019; PMCID: PMC154479.

DOI: https://doi.org/10.1093/emboj/cdg188

106. Jordan A, Defechereux P, Verdin E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 2001;20(7):1726-38. doi: 10.1093/emboj/20.7.1726. PubMed PMID: 11285236; PMCID: PMC145503.

DOI: https://doi.org/10.1093/emboj/20.7.1726

107. Mehla R, Bivalkar-Mehla S, Zhang R, Handy I, Albrecht H, Giri S, Nagarkatti P, Nagarkatti M, Chauhan A. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS One. 2010;5(6):e11160. Epub 20100616. doi: 10.1371/journal.pone.0011160. PubMed PMID: 20585398; PMCID: PMC2886842.

DOI: https://doi.org/10.1371/journal.pone.0011160

108. He S, Li Q, Huang Q, Cheng J. Targeting Protein Kinase C for Cancer Therapy. Cancers (Basel). 2022;14(5). Epub 20220222. doi: 10.3390/cancers14051104. PubMed PMID: 35267413; PMCID: PMC8909172.

109. Kortmansky J, Schwartz GK. Bryostatin-1: a novel PKC inhibitor in clinical development. Cancer Invest. 2003;21(6):924-36. doi: 10.1081/cnv-120025095. PubMed PMID: 14735696.

DOI: https://doi.org/10.1081/CNV-120025095

110. Sun MK, Alkon DL. Activation of protein kinase C isozymes for the treatment of dementias. Adv Pharmacol. 2012;64:273-302. doi: 10.1016/B978-0-12-394816-8.00008-8. PubMed PMID: 22840750.

111. Talman V, Pascale A, Jantti M, Amadio M, Tuominen RK. Protein Kinase C Activation as a Potential Therapeutic Strategy in Alzheimer’s Disease: Is there a Role for Embryonic Lethal Abnormal Vision-like Proteins? Basic Clin Pharmacol Toxicol. 2016;119(2):149-60. Epub 20160429. doi: 10.1111/bcpt.12581. PubMed PMID: 27001133.

DOI: https://doi.org/10.1111/bcpt.12581

112. Tian Z, Lu XT, Jiang X, Tian J. Bryostatin-1: a promising compound for neurological disorders. Front Pharmacol. 2023;14:1187411. Epub 20230607. doi: 10.3389/fphar.2023.1187411. PubMed PMID: 37351510; PMCID: PMC10282138.

113. Abramson E, Hardman C, Shimizu AJ, Hwang S, Hester LD, Snyder SH, Wender PA, Kim PM, Kornberg MD. Designed PKC-targeting bryostatin analogs modulate innate immunity and neuroinflammation. Cell Chem Biol. 2021;28(4):537-45 e4. Epub 20210119. doi: 10.1016/j.chembiol.2020.12.015. PubMed PMID: 33472023; PMCID: PMC8052272.

DOI: https://doi.org/10.1016/j.chembiol.2020.12.015

114. Kraft AS, Woodley SP, G. R., Gao F, J. C. Wagner, F. Comparison of the antitumor activity of bryostatins 1, 5, and 8. Cancer Chemother Pharmacol. 1996;37:271-8. doi: 10.1007/BF00688328. PubMed PMID: 8529289.

DOI: https://doi.org/10.1007/BF00688328

115. Zhang X, Zhang R, Zhao H, Cai H, Gush KA, Kerr RG, Pettit GR, Kraft AS. Preclinical Pharmacology of the Natural Product Anticancer Agent Bryostatin 1, an Activator of Protein Kinase C. Cancer research. 1996;56:802-8. PubMed PMID: 8631017.