Differential CD4+ T-Cell Cytokine and Cytotoxic Responses Between Reactivation and Latent Phases of Herpes Zoster Infection

Main Article Content

Wenjie Jin
Mike Fang
Ismail Sayin
Carson Smith
Jeffrey L. Hunter
Brian Richardson
Jackelyn B. Golden
Christopher Haley
Kenneth E. Schmader
Michael R. Betts
Cheryl M. Cameron
Stephen K. Tyring
Mark J. Cameron
David H. Canaday

Abstract

Background: CD4+ T cells are a critical component of effective immune responses to varicella zoster virus (VZV), but their functional properties during the reactivation acute vs latent phase of infection remain poorly defined.


Methods: Here we assessed the functional and transcriptomic properties of peripheral blood CD4+ T cells in persons with acute herpes zoster (HZ) compared to those with a prior history
of HZ infection using multicolor flow cytometry and RNA sequencing. 


Results: We found significant differences between the polyfunctionality of VZV-specific total memory, effector memory, and central memory CD4+ T cells in acute vs prior HZ. VZV-specific CD4+ memory T-cell responses in acute HZ reactivation had higher frequencies of IFN-γ and IL-2 producing cells compared to those with prior HZ. In addition, cytotoxic markers were higher in VZV-specific CD4+ T cells than non-VZV-specific cells. Transcriptomic analysis of ex vivo total memory CD4+ T cells from these individuals showed differential regulation of T-cell survival and differentiation pathways, including TCR, cytotoxic T lymphocytes (CTL), T helper, inflammation, and MTOR signaling pathways. These gene signatures correlated with the frequency of IFN-γ and IL-2 producing cells responding to VZV. 


Conclusions: In summary, VZV-specific CD4+ T cells from acute HZ individuals had unique functional and transcriptomic features, and VZV-specific CD4+ T cells as a group had a higher expression of cytotoxic molecules including Perforin, Granzyme-B, and CD107a.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

1. Davison AJ, Scott JE. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986;67 ( Pt 9):1759-816. Epub 1986/09/01. doi: 10.1099/0022-1317-67-9-1759. PubMed PMID: 3018124.

2. John AR, Canaday DH. Herpes Zoster in the Older Adult. Infect Dis Clin North Am. 2017;31(4):811-26. Epub 2017/10/29. doi: 10.1016/j.idc.2017.07.016. PubMed PMID: 29079160; PMCID: PMC5724974.

3. Gilden DH, Cohrs RJ, Mahalingam R. Clinical and molecular pathogenesis of varicella virus infection. Viral Immunol. 2003;16(3):243-58. Epub 2003/10/30. doi: 10.1089/088282403322396073. PubMed PMID: 14583142.

4. Kennedy PGE. Neurological complications of varicella-zoster virus infections. : Butterworth; 1987.

5. Johnson RT. Viral infections of the nervous system. Philadelphia: Lippincott-Raven Publishers; 1998.

6. Gershon AA, Breuer J, Cohen JI, Cohrs RJ, Gershon MD, Gilden D, Grose C, Hambleton S, Kennedy PG, Oxman MN, Seward JF, Yamanishi K. Varicella zoster virus infection. Nat Rev Dis Primers. 2015;1:15016. Epub 20150702. doi: 10.1038/nrdp.2015.16. PubMed PMID: 27188665; PMCID: PMC5381807.

7. Kawai K, Yawn BP, Wollan P, Harpaz R. Increasing Incidence of Herpes Zoster Over a 60-year Period From a Population-based Study. Clin Infect Dis. 2016;63(2):221-6. Epub 20160508. doi: 10.1093/cid/ciw296. PubMed PMID: 27161774; PMCID: PMC4928389.

8. Traina-Dorge V, Palmer BE, Coleman C, Hunter M, Frieman A, Gilmore A, Altrock K, Doyle-Meyers L, Nagel MA, Mahalingam R. Reactivation of Simian Varicella Virus in Rhesus Macaques after CD4 T Cell Depletion. J Virol. 2019;93(3). Epub 20190117. doi: 10.1128/JVI.01375-18. PubMed PMID: 30404798; PMCID: PMC6340024.

9. Binder D, Kundig TM. Antiviral protection by CD8+ versus CD4+ T cells. CD8+ T cells correlating with cytotoxic activity in vitro are more efficient in antivaccinia virus protection than CD4-dependent IL. J Immunol. 1991;146(12):4301-7. Epub 1991/06/15. PubMed PMID: 1710246.

10. Haberthur K, Engelmann F, Park B, Barron A, Legasse A, Dewane J, Fischer M, Kerns A, Brown M, Messaoudi I. CD4 T cell immunity is critical for the control of simian varicella virus infection in a nonhuman primate model of VZV infection. PLoS Pathog. 2011;7(11):e1002367. Epub 20111110. doi: 10.1371/journal.ppat.1002367. PubMed PMID: 22102814; PMCID: PMC3213099.

11. Juno JA, van Bockel D, Kent SJ, Kelleher AD, Zaunders JJ, Munier CM. Cytotoxic CD4 T Cells-Friend or Foe during Viral Infection? Front Immunol. 2017;8:19. Epub 20170123. doi: 10.3389/fimmu.2017.00019. PubMed PMID: 28167943; PMCID: PMC5253382.

12. Takeuchi A, Saito T. CD4 CTL, a Cytotoxic Subset of CD4(+) T Cells, Their Differentiation and Function. Front Immunol. 2017;8:194. Epub 20170223. doi: 10.3389/fimmu.2017.00194. PubMed PMID: 28280496; PMCID: PMC5321676.

13. Kurane I, Brinton MA, Samson AL, Ennis FA. Dengue virus-specific, human CD4+ CD8-cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones. J Virol. 1991;65(4):1823-8. Epub 1991/04/01. doi: 10.1128/JVI.65.4.1823-1828.1991. PubMed PMID: 1705990; PMCID: PMC239991.

14. Zhou W, Sharma M, Martinez J, Srivastava T, Diamond DJ, Knowles W, Lacey SF. Functional characterization of BK virus-specific CD4+ T cells with cytotoxic potential in seropositive adults. Viral Immunol. 2007;20(3):379-88. Epub 2007/10/13. doi: 10.1089/vim.2007.0030. PubMed PMID: 17931108.

15. Tian Y, Sette A, Weiskopf D. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection. Front Immunol. 2016;7:531. Epub 20161207. doi: 10.3389/fimmu.2016.00531. PubMed PMID: 28003809; PMCID: PMC5141332.

16. Weiskopf D, Bangs DJ, Sidney J, Kolla RV, De Silva AD, de Silva AM, Crotty S, Peters B, Sette A. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc Natl Acad Sci U S A. 2015;112(31):E4256-63. Epub 20150720. doi: 10.1073/pnas.1505956112. PubMed PMID: 26195744; PMCID: PMC4534238.

17. Kurane I, Zeng L, Brinton MA, Ennis FA. Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross-reactive for dengue virus types 2, 3, and 4. Virology. 1998;240(2):169-74. Epub 1998/02/10. doi: 10.1006/viro.1997.8925. PubMed PMID: 9454689.

18. Huang Z, Vafai A, Lee J, Mahalingam R, Hayward AR. Specific lysis of targets expressing varicella-zoster virus gpI or gpIV by CD4+ human T-cell clones. J Virol. 1992;66(5):2664-9. Epub 1992/05/01. doi: 10.1128/JVI.66.5.2664-2669.1992. PubMed PMID: 1348545; PMCID: PMC241020.

19. Hayward AR, Pontesilli O, Herberger M, Laszlo M, Levin M. Specific lysis of varicella zoster virus-infected B lymphoblasts by human T cells. J Virol. 1986;58(1):179-84. Epub 1986/04/01. doi: 10.1128/JVI.58.1.179-184.1986. PubMed PMID: 3005647; PMCID: PMC252891.

20. Marshall NB, Swain SL. Cytotoxic CD4 T cells in antiviral immunity. J Biomed Biotechnol. 2011;2011:954602. Epub 20111122. doi: 10.1155/2011/954602. PubMed PMID: 22174559; PMCID: PMC3228492.

21. Cheroutre H, Husain MM. CD4 CTL: living up to the challenge. Semin Immunol. 2013;25(4):273-81. Epub 20131115. doi: 10.1016/j.smim.2013.10.022. PubMed PMID: 24246226; PMCID: PMC3886800.

22. Brown DM, Dilzer AM, Meents DL, Swain SL. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J Immunol. 2006;177(5):2888-98. Epub 2006/08/22. doi: 10.4049/jimmunol.177.5.2888. PubMed PMID: 16920924.

23. Canaday DH, Wilkinson RJ, Li Q, Harding CV, Silver RF, Boom WH. CD4(+) and CD8(+) T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism. J Immunol. 2001;167(5):2734-42. Epub 2001/08/18. doi: 10.4049/jimmunol.167.5.2734. PubMed PMID: 11509617.

24. Van Epps P, Banks R, Aung H, Betts MR, Canaday DH. Age-related differences in polyfunctional T cell responses. Immun Ageing. 2014;11(1):14. Epub 20141023. doi: 10.1186/1742-4933-11-14. PubMed PMID: 25512758; PMCID: PMC4265991.

25. Roederer M, Nozzi JL, Nason MC. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A. 2011;79(2):167-74. Epub 20110107. doi: 10.1002/cyto.a.21015. PubMed PMID: 21265010; PMCID: PMC3072288.

26. Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014;15:182. Epub 20140612. doi: 10.1186/1471-2105-15-182. PubMed PMID: 24925680; PMCID: PMC4074385.

27. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907-15. Epub 20190802. doi: 10.1038/s41587-019-0201-4. PubMed PMID: 31375807; PMCID: PMC7605509.

28. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9. Epub 20090608. doi: 10.1093/bioinformatics/btp352. PubMed PMID: 19505943; PMCID: PMC2723002.

29. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-30. Epub 20131113. doi: 10.1093/bioinformatics/btt656. PubMed PMID: 24227677.

30. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Epub 20130116. doi: 10.1186/1471-2105-14-7. PubMed PMID: 23323831; PMCID: PMC3618321.

31. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. Epub 20150120. doi: 10.1093/nar/gkv007. PubMed PMID: 25605792; PMCID: PMC4402510.

32. Weinberg A, Canniff J, Rouphael N, Mehta A, Mulligan M, Whitaker JA, Levin MJ. Varicella-Zoster Virus-Specific Cellular Immune Responses to the Live Attenuated Zoster Vaccine in Young and Older Adults. J Immunol. 2017;199(2):604-12. Epub 20170612. doi: 10.4049/jimmunol.1700290. PubMed PMID: 28607114; PMCID: PMC5505810.

33. Li G, Yang Q, Zhu Y, Wang HR, Chen X, Zhang X, Lu B. T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells. PLoS One. 2013;8(6):e67401. Epub 20130627. doi: 10.1371/journal.pone.0067401. PubMed PMID: 23826287; PMCID: PMC3694876.

34. Qui HZ, Hagymasi AT, Bandyopadhyay S, St Rose MC, Ramanarasimhaiah R, Menoret A, Mittler RS, Gordon SM, Reiner SL, Vella AT, Adler AJ. CD134 plus CD137 dual costimulation induces Eomesodermin in CD4 T cells to program cytotoxic Th1 differentiation. J Immunol. 2011;187(7):3555-64. Epub 20110831. doi: 10.4049/jimmunol.1101244. PubMed PMID: 21880986; PMCID: PMC3178659.

35. Lord GM, Rao RM, Choe H, Sullivan BM, Lichtman AH, Luscinskas FW, Glimcher LH. T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood. 2005;106(10):3432-9. Epub 20050712. doi: 10.1182/blood-2005-04-1393. PubMed PMID: 16014561; PMCID: PMC1895048.

36. Mazzoni A, Maggi L, Siracusa F, Ramazzotti M, Rossi MC, Santarlasci V, Montaini G, Capone M, Rossettini B, De Palma R, Kruglov A, Chang HD, Cimaz R, Maggi E, Romagnani S, Liotta F, Cosmi L, Annunziato F. Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation. Eur J Immunol. 2019;49(1):79-95. Epub 20181122. doi: 10.1002/eji.201847677. PubMed PMID: 30144030.

37. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F, Newell EW. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2018. Epub 20181203. doi: 10.1038/nbt.4314. PubMed PMID: 30531897.

38. Lin L, Finak G, Ushey K, Seshadri C, Hawn TR, Frahm N, Scriba TJ, Mahomed H, Hanekom W, Bart PA, Pantaleo G, Tomaras GD, Rerks-Ngarm S, Kaewkungwal J, Nitayaphan S, Pitisuttithum P, Michael NL, Kim JH, Robb ML, O’Connell RJ, Karasavvas N, Gilbert P, S CDR, McElrath MJ, Gottardo R. COMPASS identifies T-cell subsets correlated with clinical outcomes. Nat Biotechnol. 2015;33(6):610-6. Epub 20150525. doi: 10.1038/nbt.3187. PubMed PMID: 26006008; PMCID: PMC4569006.

39. McInnes L HJ, Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv:180203426. 2018. Epub February 9.

40. Curran MA, Geiger TL, Montalvo W, Kim M, Reiner SL, Al-Shamkhani A, Sun JC, Allison JP. Systemic 4-1BB activation induces a novel T cell phenotype driven by high expression of Eomesodermin. J Exp Med. 2013;210(4):743-55. Epub 20130401. doi: 10.1084/jem.20121190. PubMed PMID: 23547098; PMCID: PMC3620352.

41. Hirschhorn-Cymerman D, Budhu S, Kitano S, Liu C, Zhao F, Zhong H, Lesokhin AM, Avogadri-Connors F, Yuan J, Li Y, Houghton AN, Merghoub T, Wolchok JD. Induction of tumoricidal function in CD4+ T cells is associated with concomitant memory and terminally differentiated phenotype. J Exp Med. 2012;209(11):2113-26. Epub 20120924. doi: 10.1084/jem.20120532. PubMed PMID: 23008334; PMCID: PMC3478933.

42. Meckiff BJ, Ramirez-Suastegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, Grifoni A, Pelosi E, Weiskopf D, Sette A, Ay F, Seumois G, Ottensmeier CH, Vijayanand P. Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4 (+) T cells. bioRxiv. 2020. Epub 20200613. doi: 10.1101/2020.06.12.148916. PubMed PMID: 32587963; PMCID: PMC7310619.

43. Schub D, Janssen E, Leyking S, Sester U, Assmann G, Hennes P, Smola S, Vogt T, Rohrer T, Sester M, Schmidt T. Altered phenotype and functionality of varicella zoster virus-specific cellular immunity in individuals with active infection. J Infect Dis. 2015;211(4):600-12. Epub 20140901. doi: 10.1093/infdis/jiu500. PubMed PMID: 25180236.

44. Weinberg A, Zhang JH, Oxman MN, Johnson GR, Hayward AR, Caulfield MJ, Irwin MR, Clair J, Smith JG, Stanley H, Marchese RD, Harbecke R, Williams HM, Chan IS, Arbeit RD, Gershon AA, Schodel F, Morrison VA, Kauffman CA, Straus SE, Schmader KE, Davis LE, Levin MJ, Investigators USDoVACSPSPS. Varicella-zoster virus-specific immune responses to herpes zoster in elderly participants in a trial of a clinically effective zoster vaccine. J Infect Dis. 2009;200(7):1068-77. Epub 2009/08/29. doi: 10.1086/605611. PubMed PMID: 19712037; PMCID: PMC4014851.

45. Arnold N, Messaoudi I. Simian varicella virus causes robust transcriptional changes in T cells that support viral replication. Virus Res. 2017;238:226-35. Epub 20170708. doi: 10.1016/j.virusres.2017.07.004. PubMed PMID: 28698046; PMCID: PMC7114558.

Most read articles by the same author(s)