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ABSTRACT 
Objective: A role for microorganisms in giant cell arteritis (GCA) has long been suspected. We 
describe the microbiomes of temporal arteries from patients with GCA and controls. 

Methods: Temporal artery biopsies from patients suspected to have GCA were collected under 
aseptic conditions and snap-frozen. Fluorescence in situ hybridization (FISH) and long-read 16S 
rRNA-gene sequencing was used to examine microbiomes of temporal arteries. Taxonomic clas-
sification of bacterial sequences was performed to the genus level and relative abundances were 
calculated. Microbiome differential abundances were analyzed by principal coordinate analysis 
(PCoA) with comparative Unifrac distances and predicted functional profiling using PICRUSt. 

Results: Forty-seven patients, including 9 with biopsy-positive GCA, 15 with biopsy-negative 
GCA and 23 controls without GCA, were enrolled. FISH for bacterial DNA revealed signal in the 
arterial media. Beta, but not alpha, diversity differed between GCA and control temporal arteries 
(P = 0.042). Importantly, there were no significant differences between biopsy-positive and biop-
sy-negative GCA (P > 0.99). The largest differential abundances seen between GCA and non-GCA 
temporal arteries included Proteobacteria (P), Bifidobacterium (g), Parasutterella (g), and Granu-
licatella (g) [Log 2-fold change > 4].

Conclusion: Temporal arteries are not sterile, but rather are inhabited by a community of bacte-
ria. We have demonstrated that there are microbiomic differences between GCA and non-GCA 
temporal arteries, but not between biopsy-positive and biopsy-negative GCA.

Keywords: vasculitis; giant cell arteritis; microbiome

INTRODUCTION
Giant cell arteritis (GCA) is the most common large vessel vasculitis in adults, with an estimated 
incidence of 15-25 cases/100,000 among persons > 50 years old [1]. The most frequently affected 
vessels are the extracranial branches of the carotid arteries, resulting in headache, scalp tender-
ness, jaw claudication, and visual aberration or blindness. Temporal artery biopsies represent the 
most readily accessible source of tissue for confirmation of diagnosis; however, they may fail to 
reveal inflammatory infiltrates in up to 50% of cases, due to the presence of skip lesions or the 
predominance of large vessel disease [2]. Post-mortem and imaging studies have also revealed 
that involvement of the aorta and its primary branch vessels is common, if not universal, in GCA 
[3-5]. Indeed, in a post-mortem study of the aorta and primary branch vessels in 13 consecutive 
patients with GCA, all had features of vasculitis in spite of treatment with corticosteroids in 9 of 
13 patients for several months to up to 9 years duration [3]. Although patients with GCA usual-
ly respond quickly to treatment with high dose glucocorticoids, relapses occur frequently when 
doses are tapered, suggesting that the underlying driver of inflammation has not been addressed 
[6, 7]. 

Cellular infiltrates in GCA include activated vascular dendritic cells, which attract Th1 and Th17 
lymphocytes and activated macrophages to the arterial wall. The antigen(s) responsible for initial 
activation of dendritic cells has not yet been identified [1]. Interferon gamma is the hallmark cy-
tokine of the Th1 response and is a cytokine triggered in response to intracellular pathogens [8]. 
It is therefore plausible that infectious agents may be providing antigenic stimulation in GCA.
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A role for infection in GCA is supported by the observation of cyclical peaks in disease incidence 
[9]. Multiple viral [10-13] and bacterial [14-16] agents have previously been implicated; however, 
attempts at pathogen detection by epidemiologic, focused genetic, and immunohistochemical 
approaches have failed to provide consistent results. Recent reports of varicella zoster virus in 
temporal artery biopsies in GCA are intriguing, but require additional confirmation [17-20].

Sequencing of the bacterial-specific 16S ribosomal RNA gene from human tissue is a sensitive 
and culture-independent method for both pathogen and commensal detection, allowing for a 
more comprehensive and unbiased description of the temporal artery microbiome in GCA. 

MATERIALS AND METHODS
Sample Accrual and Collection
We prospectively enrolled consecutive consenting patients undergoing temporal artery biopsy for 
evaluation of possible GCA, under a study protocol conducted in compliance with the Helsinki 
Declaration and approved by the Institutional Review Board at the Cleveland Clinic. All partic-
ipants provided written informed consent. The authors GSH and CE together have full access to 
the data and take responsibility for its integrity and data analysis. The temporal artery biopsies 
were collected under strictly aseptic conditions by a team of ophthalmologists. Biopsies did not 
include skin. Biopsies were split, with one-half sent for routine histopathological review and one-
half snap-frozen under sterile technique for microbiome analysis. Patients were classified accord-
ing to clinical phenotype, including corticosteroid use, clinical symptoms, co-morbidities and 
histopathology results as either biopsy-positive GCA (histopathology confirming inflammatory 
infiltrates and compatible clinical presentation), biopsy-negative GCA (histopathology without 
inflammatory infiltrates, but meeting the American College of Rheumatology 1990 Classification 
criteria for GCA [21] and a persistent clinical diagnosis of GCA at least 3 months post-biopsy), 
or as controls (patients in whom the diagnosis of GCA and other forms of vasculitis were sub-
sequently ruled out). Following >3 years of collection, all samples were processed at the same 
time. Laboratory-based microbiome investigators were kept unaware of the patients’ clinical and 
pathological diagnoses.

Fluorescence In Situ Hybridization (FISH)
Two samples (TA6 Control and TA13 GCA) were examined by FISH to identify the possible pres-
ence of bacteria within the vessel wall. Tissue had been snap-frozen for 16S rRNA gene analysis 
(described below) and also formalin-fixed and paraffin-embedded per routine protocols. FISH for 
bacterial 16S rRNA was performed using a previously published protocol [22]. Sections of 2 µm 
were cut and mounted on coated microscope slides. Sections were deparaffinized and then sub-
jected to cell wall and protein degradation with incubations in lysozyme followed by proteinase K. 
Sections were hybridized, for 3.5 hours, with 100µM EUB 338, a previously published oligonucle-
otide complementary to a universally conserved region of the bacterial 16S rRNA gene. Following 
this step, sections were counterstained with 0.025% (weight per volume) concanavalin A-Alexa 
Fluor 594 (Integrated DNA Technologies, Coralville, IA) for 20 minutes. Finally, sections were 
mounted with Vectashield-DAPI (Vector Laboratories, Burlingame, CA) and dried overnight. 
Concanavalin A is used as a counterstain for glycoproteins, while DAPI is used for identification 
of human nuclei. Images were acquired using a Leica TCS-SP2 spectral laser scanning confocal 
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microscope operated with Leica Confocal Software (Leica Microsystems, GmbH, Wetzlar, Ger-
many).

Fluorescence intensities from signals of FISH-positive bacteria were measured using Image J 
(NIH). The mean intensity was calculated by subtracting the background intensity for the green 
channel from the measured intensity within the region of interest (within the media, ie, not exter-
nal to the adventitia).

16S Ribosomal RNA-Gene Sequencing of Temporal Artery Biopsies
Total deoxyribonucleic acid (DNA) was isolated using the AllPrep DNA/RNA Isolation Kit 
according to the manufacturer’s protocol (Qiagen, Valencia, CA) with minor modifications [23]. 
Briefly, all beads, tubes, and non-enzymatic reagents were treated with UV light for 30 minutes 
prior to use; samples were digested with 20 µL of 20 ng/µL Proteinase K (Roche Diagnostics 
Corp., Indianapolis, IN) at 65oC for 1 hour, then transferred to 0.1 mm glass beaded tubes. After 
this the samples were homogenized using the TissueLyser LT (Qiagen). The quality and purity of 
the isolated total DNA were confirmed spectrophotometrically using a NanoDrop 2000 device 
(Fisher Scientific SAS, Illkirch, France). DNA concentration was quantified using the Qubit 2.0 
instrument applying the Qubit dsDNA HS Assay (Life Technologies). Extracted DNA samples 
were stored at -20°C.

Bacterial 16S rRNA-gene amplification and library construction were performed according to 
the 16S Metagenomic Sequencing Library Preparation guide from Illumina (Forest City, CA). In 
brief, 2 µL total DNA was amplified using primers targeting the 16S V3 and V4 region (Illumina) 
at 95oC for 5 minutes, followed by 35 cycles at 95oC for 30 seconds, 56°C for 30 seconds, and 72oC 
for 30 seconds with a final extension at 72oC for 10 minutes. The 16S rDNA amplicons were run 
out on a 1% agarose gel, size-selected at 450-500 bp, and gel-purified using QIAquick Gel  
Purification kit (Qiagen). A second round of PCR was performed to add Nextera XT indices 
(Illumina) to purified amplicons. Indexed PCR products were cleaned with Ampure XP beads 
(Beckman Coulter, Inc., Brea, CA) and resulting libraries quantified with the QuantiFluor dsDNA 
system according to the manufacturer’s protocol (Promega, Madison, WI). Samples were then 
normalized to 10nM and pooled into sequencing libraries. Pooled V3-V4 amplicon libraries were 
sequenced using the Illumina MiSeq platform with V3 reagent kit. The 300-bp paired end reads 
for each sample were demultiplexed and quality checked using FastQC 0.11.3.

Temporal artery specimens were stored in sterile containers. Sterilized water was aliquoted into 
the containers and then removed and 16S rRNA gene sequencing performed, revealing no con-
tamination.

Microbiome Analysis
A hybrid post-sequencing analysis methodology using QIIME and MICCA was adopted, and pre-
processing was performed in QIIME and open-reference operational taxonomic unit (OTU) pick-
ing was performed with MICCA and Phyloseq [24, 25]. After the biom files were created, down-
stream analysis was performed with QIIME. The 250-bp Illumina paired-end reads were merged 
with FLASH [26], and low-quality reads (Phred < 20) were filtered out using the split_libraries.py 
command in QIIME (version 1.9) [27]. MICCA vsearch (version 1.9.5) [28] was utilized for clus-
tering the sequences with a threshold of 97% similarity, and representative sequences were classi-
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fied using RDP classifier (version 2.11) [29]. Multiple sequence alignments were performed using 
MUSCLE (version 3.8.31) [30, 31] against the Greengenes database (version 13.8) [32], filtered at 
97% similarity, and FastTree (version 2.1.8) was used for phylogenetic tree construction [33]. 

Data clean-up was done by removing the singletons and discarding taxa represented in fewer than 
5% of total samples. The rarefaction value was set to 8,467 reads per sample to reduce sampling 
heterogeneity, and computation of alpha (Shannon diversity index) and beta diversity measures 
(unweighted UniFrac distances) were performed with PhyloSeq in R. Alpha diversity measures 
species richness (number of taxa) within a single microbial ecosystem. Beta diversity can be 
represented by UniFrac distances which describe similarities and dissimilarities between bacterial 
communities using phylogenetic information, taking into account the number of taxa and relative 
abundances within each taxon. F-tests based on sequential sums of squares derived from 1,000 
permutations on UniFrac distance matrices were performed with the null hypothesis that there is 
no difference in community structure between groups. Note that PCoA and the calculation of P 
values are measurements of clustering strength. This is not based on linear correlations (because 
this is not linear). Differences (and the P value) are derived from measuring differences between 
UniFrac distances. To find which taxa are most likely to explain the differences between our 
clinical groupings, taxa summaries and differential abundances were analyzed with DESeq2. This 
algorithm estimates variance-mean dependence in count data and tests for differential expression 
based on a model using the negative binomial distribution. Differentially abundant taxa that were 
statistically significant using an alpha of 0.05 and exceeded a Log2-fold change of ±2 were visually 
represented on box plots. A heatmap was generated from the top differentially dominant OTUs 
using the Bray-Curtis distance methods and where the plot was created using pheatmap in R.

We analyzed functional composition of microbiomes using the PICRUSt 1.0.0-dev bioinformat-
ics package [34]. We filtered out all de novo OTUs and used this OTU table as our input into the 
PICRUSt algorithm, which calculates contributions of various OTUs to known biological path-
ways based on evolutionary modeling. The OTU picking was performed against the Greengenes 
(gg_13_8) database using a 97% similarity threshold. Welch’s t test was used to calculate P values, 
and corresponding Storey q-values were used to control for the false discovery rates associated 
with multiple testing. These values were calculated using DESeq2 and LEfSe and visualized as a 
cladogram or bar plot using Phyloseq or LEfSe [35].

RESULTS
Patients
Forty-seven patients were enrolled in the study, including 9 patients with a final diagnosis of 
biopsy-positive GCA, 15 patients with biopsy-negative but clinically confirmed GCA, and 23 
additional patients in whom the diagnosis of GCA was ruled out by histology and clinical course 
(Table 1). Median age at the time of biopsy was 71 years for those with GCA and 73 for non-GCA 
controls (P = 0.5). Two-thirds of the patients were female (P = 0.065 between GCA and non-GCA 
patients) [Table 1]. Thirty-eight of 49 patients (78%) had been receiving daily prednisone (mean 
dose > 50mg/day) prior to temporal artery biopsies (89% in the GCA biopsy-positive group, 86% 
in the GCA biopsy-negative group, and in 71% of controls). There was no difference between 
groups in prednisone use (P > 0.35), dose (P > 0.5) or duration of treatment (P = 0.56) [Table 1].
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Table 1. Patient baseline demographics at the time of biopsy 

 
Controls 

(23)
Bx- GCA*  

(15)
Bx+ GCA 

(9)
Total  
(47)

Age (years) 72.9 +/-9.4 71.2+/- 2.4 75.5+/- 3.2 71.9+/-8.9

Female, no. (%) 15 (65%) 9 (60%) 4 (44%) 28 (60%) 

Race, no. 

White (%)
21 (91%) 12 (80%)   8 (89%) 41 (87%) 

Vascular Symptoms, no. (%) 16 (70%)  12 (80%)  8 (89%)   36 (77%)

Systemic Symptoms, no. (%) 2 (9%) 6 (40%)  1 (11%)    9 (19%)

ESR (mm/hr) 
(mean+/-SD, range)

 39+/-6  48+/-7  32+/-9  40+/-25

CRP (mg/dl) 
(mean+/-SD, range)

1.8+/-1.1 4.5+/-1.5   5.6+/-1.6 3.5+/-4.5 

Prednisone use (%) 15 (65%)   12 (80%) 8 (89%)  35 (74%) 

Prednisone use >50mg/d 
(mean prior to biopsy)

12 (52%)   6 (40%) 5 (56%)  23 (49%) 

Duration of prednisone 
(days) [mean+/-SD] 

23+/-35 14+/-6  32+/-50 22+/-35 

Other immunosuppression  2 (9%)**  0 (0%)   0 (0%)  2 (4%)

*Biopsy-negative, but clinically confirmed positive GCA. 
**One patient each was receiving low dose methotrexate for rheumatoid arthritis and another for granulo-
matosis with polyangiitis.
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Histopathology
Temporal artery biopsies of the 9 patients with a final diagnosis of biopsy-proven GCA revealed 
arteritis, with mononuclear cell inflammatory infiltrates localized to the adventitia and media, 
fragmentation of the internal elastic lamina, and varying degrees of intimal proliferation and 
fibrinoid necrosis. All biopsies from patients who were biopsy-negative with clinically positive 
GCA and 20 of 23 TA from controls without GCA revealed arteriosclerosis, with intimal thicken-
ing and rare, focal calcification; 3 TA from controls without GCA were normal. 

Bacterial DNA Detection in Temporal Arteries by FISH 
Sterile, fresh frozen temporal artery biopsies from a control patient (TA6C) and a patient with 
GCA (TA13G) were fixed and paraffin-embedded. FISH using an oligonucleotide probe specif-
ic for bacterial 16S rRNA revealed the presence of multiple single bacteria in the media of both 
control and GCA-involved arteries (Figure 1). No FISH signal corresponding to the presence of 
bacteria was apparent in the intimal layer, arterial lumen, or external border of the specimen. 
Corroborating the FISH microscopy, the mean intensity for the FISH-positive bacteria (Figure 1, 
bar graph) was higher in GCA-involved arteries compared to that of the control temporal artery 
(Figure 1B vs 1A), and no signal was ascertained at the external edge of a GCA-involved temporal 
artery (Figure 1C).
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Figure 1. Distribution of bacterial DNA in temporal arteries. Tissue sections were probed with fluores-
cently labeled oligonucleotide probes against bacterial DNA (green). Sections were counterstained with 
DAPI (blue) and Concanavalin A (red) to delineate nuclei and glycoproteins, respectively. Sections were 
scanned by confocal microscopy. In a control temporal artery (A), bacterial DNA is scattered throughout 
the media, with select examples highlighted by green arrows. Notably, no/negligible bacterial DNA stain-
ing is apparent in the lumen or intima (A, bar graph). The green channel emitted from the internal elastic 
lamina is a result of autofluorescence. In a temporal artery with histopathological evidence of GCA (B), 
bacterial DNA is scattered throughout the media and at a higher mean intensity than control (bar graph). 
Arterial layers are more disorganized and less distinct compared to a control temporal artery, as evidenced 
by weak autofluorescence and less distinct internal elastic lamina. There is an absence of bacterial DNA at 
the external edge of a GCA-involved temporal artery specimen (C, bar graph).

Microbiome in Temporal Arteries from Patients with and without Giant Cell Arteritis
Culture-independent, long-read genomic sequencing was used to characterize the entire microbi-
al communities of temporal arteries from the 47 research participants. After sequencing and qual-
ity control, 4 samples were excluded from further analyses because of low read counts, leaving 43 
samples comprising 20 with GCA (7 biopsy-positive, 13 biopsy-negative) and 23 without GCA. 
There were no alpha diversity differences between GCA and non-GCA temporal artery microbio-
ta. In contrast, beta-diversity, as measured by unweighted UniFrac distances, differed between the 
GCA and non-GCA groups (P = 0.042, Figure 2A). Of note, there were no statistically significant 
differences between temporal arteries from those with biopsy-positive GCA and those with biop-
sy-negative GCA (P = 1.0, Figure 2B).
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Figure 2. Microbiomes from TAs with biopsy-positive and biopsy-negative GCA cluster together but 
differently from those from control patients. Principal component analysis (PCoA) of TA microbiomes. 
(A) β-diversity (not α, data not shown), differs between GCA and control groups (P = 0.042). (B) There 
were no statistically significant differences between TA microbiomes in those with biopsy-positive GCA vs 
those with biopsy-negative/clinically positive GCA (P > 0.99).

In order to gain insight into the microbial inhabitants of temporal arteries, we compared the rela-
tive abundances of bacterial OTUs within temporal artery biopsies with and without GCA (Fig-
ure 3). At the phylum level, there were at least 2 classes of Firmicutes relatively over-represented 
(> + 4) in GCA temporal arteries compared to those without GCA, although there were 2 other 
classes of Firmicutes relatively under-represented in temporal arteries with GCA versus temporal 
arteries without GCA (< -4, Figure 3A). Proteobacteria and Actinobacteria were relatively un-
der-represented in temporal artery samples from patients with GCA compared to those without 
GCA (< -4; Figure 3A). At the genus level, Granulicatella and Streptococcus, both belonging to 
phylum Firmicutes, were relatively over-represented whereas Parasutteralla, belonging to phylum 
Proteobacteria, and Bifidobacterium, belonging to phylum Actinobacteria, were relatively un-
der-represented in temporal artery samples from patients with GCA compared to those without 
GCA (Figure 3B).
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Figure 3. Most differentially abundant taxa in temporal artery biopsies from patients with GCA and 
from control patients. (A) Bar blot representation from DESeq2 showing the most over-represented (+) 
and under-represented (-) phyla in TAs from patients with GCA compared to TAs from controls. (B) Bar 
blot representation from DESeq2 showing the most over-represented (+) and under-represented (-) genera 
in TAs from patients with GCA compared to TAs from controls. (C) Heat map of bacterial communities in 
TA with GCA (“inflammatory” blue bar) compared to those without GCA (“noninflammatory” pink bar) 
based on the top dominant OTUs. Columns and rows represent samples and dominant OTUs, respectively. 
Row names on the right of the heat map include Green Genes ID followed by family and genus. 

Predicting Functional Consequences of Differing Microbial Composition in GCA- and Non-GCA- Associ-
ated Temporal Arteries
We analyzed microbiomes by predicting their functional contributions to their host environments 
using the PICRUSt algorithm. There was relative downregulation of ion-coupled transporters 
and steroid biosynthesis pathways in the group with GCA (combining biopsy-positive and bi-
opsy-negative) compared to temporal arteries from non-GCA controls (all P < 0.05, Figure 4A). 
When only the biopsy-positive GCA temporal arteries were compared to non-GCA controls, the 
steroid biosynthesis pathway was relatively downregulated while the cardiac muscle contraction 
pathway was relatively upregulated (Figure 4B). While the steroid biosynthesis pathway remained 
relatively downregulated in biopsy-negative GCA compared to controls, there were multiple other 
pathways that were relatively upregulated and downregulated (Figure 4C). Interestingly, predicted 
downregulation of metabolism pathways appears to be found between both biopsy-positive GCA 
compared to control and biopsy-negative GCA compared to control.
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Figure 4. Predicted functional pathways differentially represented in GCA TA compared to con-
trol (non-GCA) TA. Representation of PICRUSt DESeq2 analysis yielding relatively under-represented 
functional pathways in (A) GCA TA compared to control TA, (B) biopsy-positive GCA TA compared to 
control TA and (C) biopsy-negative GCA TA versus control TA.

DISCUSSION
Our most reliable and important observation is that temporal arteries are not sterile, as previously 
assumed, but rather are inhabited by communities of bacteria in both the control and diseased 
state. Interestingly, the microbiomes of biopsy-negative, clinically confirmed GCA temporal 
arteries were similar to those of biopsy-positive GCA temporal arteries, suggesting a potential 
underlying similarity of temporal arteries from patients with GCA not reflected in histopatholog-
ic review. Together, microbial communities in biopsy-positive and biopsy-negative GCA temporal 
arteries were also distinct from those in control GCA-negative samples. This observation raises an 
important question regarding why there are histopathologic differences between biopsy-positive 
and biopsy-negative individuals with GCA since the microbiome between these subsets is similar. 
The answer is unknown. One might speculate that if microbiomes played a role in pathogenesis of 
GCA, that role may be permissive, and at a later uncertain time interval, be followed by a histo-
logically apparent inflammatory response. If such were the case, “skip lesions” in GCA biopsies, 
which are well known, may result from a GCA step-wise inflammatory response. Our study did 
not address this possibility. 

We believe that our GCA microbiome study is unique because of collecting and maintaining 
tissues using aseptic techniques, avoiding formalin fixation, paraffin embedding, and contamina-
tion with known skin and external environmental organisms and not disclosing patient diagno-
ses to our lab-based colleagues. Environmental contamination had been a concern of Bhatt and 
colleagues, who had identified Propionibacterium acnes and Escherichia coli as the most abundant 
microorganisms found in both formalin-fixed paraffin-embedded temporal arteries from patients 
with GCA and in controls [36]. Both quantitative and qualitative microbiome data were similar 
in their GCA cases and controls. Our study also differs in regard to clear qualitative differenc-
es noted between GCA and control samples. The differences in microbiome between GCA and 
non-GCA temporal artery specimens also supports the conclusion that contamination was not 
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likely to have affected these specimens which were processed in identical fashion and analyzed at 
the same time. This is corroborated by our FISH studies which demonstrate bacterial nucleic acid 
within the arterial walls, without any bacteria external to the adventitia nor in the arterial lumen.

We were concerned about the effects of treatment on our analyses. It is generally recommend-
ed that once the diagnosis of GCA is considered, treatment with corticosteroids should not be 
delayed while awaiting temporal artery biopsy [5]. Consequently, it was expected that most of our 
patients (74%) had been treated prior to biopsy. However, in comparing corticosteroid treated 
and untreated cases, treatment did not appear to influence the microbiome. 

Bhatt et al also note that indications for temporal artery biopsies in control patients are another 
factor that could impact GCA studies [36]. All biopsied individuals usually have had symptoms 
or findings suggestive of GCA, leading their physician to arrange for this procedure. Thus, inves-
tigators should be concerned about whether controls are truly GCA biopsy-negative but clinically 
positive. We tried to minimize this risk by following patients for at least 3 months post-biopsy to 
ensure that while untreated, features of GCA did not emerge and initial symptoms had resolved 
or could be attributed to alternative diagnoses. We therefore have a high degree of confidence that 
our controls did not have undiagnosed GCA. 

Our results suggest that there does not appear to be a single bacterial pathogen characteristic of 
GCA. Species previously implicated in GCA pathogenesis such as Mycoplasma pneumonia [14], 
Chlamydia pneumonia [16], and Burkholderia pseudomallei-like organisms [15] were not found in 
our dataset. Given the high person-to-person species variability in our study, the inconsistency of 
named bacterial species in prior publications is not surprising. Additionally, many prior studies 
used formalin-fixed tissue, which is known to cause DNA cross-linking, nucleic acid shearing, 
reduction in yield, and sequencing artifacts [37]. We believe our fresh-frozen temporal artery 
samples, collected aseptically and specifically for microbiomic studies, most closely represent the 
actual bacterial constituents in temporal arteries. 

Our findings included differences in microbiome content and density for the phylum Firmic-
utes, which was relatively over-represented, and Proteobacteria and Actinobacteria, which were 
relatively under-represented in temporal arteries from patients with GCA compared to controls. 
While differences were found in functional pathways between GCA and non-GCA cases, the sig-
nificance of those changes is uncertain. 

The notion of a vascular microbiome is neither new nor novel [38]. Many studies have demon-
strated the presence of both bacteria and viruses within the walls of large and medium-sized 
blood vessels. Most compelling are the findings of bacteria in the lipid-rich core of plaques 
and within smooth muscle cells of atherosclerotic aortas and coronary arteries. Recent reports 
have also raised questions about the potential role of microbes in non-atherosclerotic arteries 
and apparently normal vessels. The most compelling of these studies are those that are metage-
nome-DNA-based. One study included 56 fresh, sterile aortic aneurysm samples from patients 
with atherosclerosis and non-atherosclerotic disease [39, 40]. Using PCR with universal 16S 
rRNA primers, bacterial DNA was isolated from about 90% of samples. Ten samples were selected 
for speciation from patients with Marfan’s syndrome, idiopathic aortitis, aortic coarctation, and 
mechanical/degenerative aneurysms. All but 1 specimen revealed the presence of multiple bac-
terial species [39]. While metagenomic techniques are unbiased and more sensitive, they cannot 
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determine whether the detected DNA is from living organisms or are remnants of microbes or 
contaminants. These unresolved questions can be applied to our findings in temporal artery biop-
sies as well and represent universal limitations of such studies.

Our study does have important strengths. It is the first to be performed on surgically sterile tem-
poral arteries that were maintained under strict aseptic conditions throughout processing. Micro-
biome studies were performed by some of the authors without knowledge of clinical or pathologi-
cal diagnoses. Arguing against contamination are first, the FISH studies that revealed the absence 
of bacterial DNA on the adventitial or luminal surfaces of specimens, and second, differences in 
microbial communities in patients with GCA versus controls (beta diversity). In addition, spec-
imens from clinically diagnosed but biopsy-negative patients with GCA were not eligible for the 
study until at least 3 months of follow-up during which other diagnoses did not become apparent 
and satisfactory responses to corticosteroid therapy were well documented. Conversely, controls 
were not classified as such until similar follow-up revealed alternative diagnoses. 

Our observations here are most important in emphasizing that temporal arteries are not sterile 
and that quantitative and qualitative microbiome and metabolic differences exist between those 
vessels in patients with GCA and controls. Localization of bacterial DNA using FISH indicates 
that bacteria are present within the temporal artery itself, and not within luminal deposits or 
due to external contamination at the surface of the sample. In fact, the external edges of excised 
temporal arteries displayed a remarkable absence of bacterial DNA. This finding is supported by 
another also suggesting the existence of a variety of bacteria in temporal arteries [17]. However, 
despite these suggestive observations, we have not proven that these findings play a role in the 
pathogenesis of GCA or are a result of substrate modifications due to GCA-mediated vessel inju-
ry. 
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