Inflammation and Microbial Translocation Correlate with Reduced MAIT Cells in People with HIV

Main Article Content

Angela Ryu
Brian Clagett
Mike Freeman

Abstract

Background: Optimal control of microbial infections requires mucosal-associated invariant T (MAIT) cells. People living with HIV (PWH) on antiretroviral therapy (ART) can be divided into 2 groups: immune responders (IR) who recover or retain CD4 T cell numbers, and immune non-responders (INR) who do not. Compared to IR, INR have fewer MAIT cells and increased systemic inflammation and microbial translocation, but how these factors affect MAIT cells is unknown.


Methods: MAIT cells from IR, INR, and from controls without HIV were enumerated and characterized by flow cytometry. To determine the links among MAIT cells, inflammation, and microbial translocation, the correlations of MAIT cell numbers to previously published soluble inflammatory markers and plasma microbial genetic sequences were assessed by Spearman analysis. In vitro assays were used to support our findings. 


Results: MAIT cell numbers were significantly negatively correlated with levels of IL-6 and IP-10 (markers of inflammation); CD14, LPS, and FABP2 (markers of microbial translocation); and with abundance of Serratia and other Proteobacteria genetic sequences in plasma. In a separate analysis of PWH on ART receiving the IL-6 receptor antagonist tocilizumab (TCZ), we found that blocking IL-6 signaling with TCZ increased IL-7 receptor expression on MAIT cells and reduced plasma IL-7 levels, consistent with improved uptake of IL-7 in vivo


Conclusions: Our findings suggest inflammation and microbial translocation in PWH on ART lead to a loss of MAIT cells via impaired IL-7 responsiveness, resulting in further increased microbial translocation and inflammation.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

1. Le Bourhis L, Mburu YK, Lantz O. MAIT cells, surveyors of a new class of antigen: development and functions. Current opinion in immunology. 2013;25(2):174-80. doi: 10.1016/j.coi.2013.01.005. PubMed PMID: 23422835.

2. Gapin L. Check MAIT. Journal of immunology. 2014;192(10):4475-80. doi: 10.4049/jimmunol.1400119. PubMed PMID: 24795465; PMCID: PMC4025967.

3. Hinks TSC, Zhang XW. MAIT Cell Activation and Functions. Front Immunol. 2020;11:1014. doi: 10.3389/fimmu.2020.01014. PubMed PMID: 32536923; PMCID: PMC7267072.

4. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491(7426):717-23. doi: 10.1038/nature11605. PubMed PMID: 23051753.

5. Patel O, Kjer-Nielsen L, Le Nours J, Eckle SB, Birkinshaw R, Beddoe T, Corbett AJ, Liu L, Miles JJ, Meehan B, Reantragoon R, Sandoval-Romero ML, Sullivan LC, Brooks AG, Chen Z, Fairlie DP, McCluskey J, Rossjohn J. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nature communications. 2013;4:2142. doi: 10.1038/ncomms3142. PubMed PMID: 23846752.

6. Jaroensuk J, Chuaboon L, Kesornpun C, Chaiyen P. Enzymes in riboflavin biosynthesis: Potential antibiotic drug targets. Arch Biochem Biophys. 2023;748:109762. doi: 10.1016/j.abb.2023.109762. PubMed PMID: 37739114.

7. Sharma PK, Wong EB, Napier RJ, Bishai WR, Ndung’u T, Kasprowicz VO, Lewinsohn DA, Lewinsohn DM, Gold MC. High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells. Immunology. 2015;145(3):443-53. doi: 10.1111/imm.12461. PubMed PMID: 25752900; PMCID: PMC4479542.

8. Gherardin NA, Souter MN, Koay HF, Mangas KM, Seemann T, Stinear TP, Eckle SB, Berzins SP, d’Udekem Y, Konstantinov IE, Fairlie DP, Ritchie DS, Neeson PJ, Pellicci DG, Uldrich AP, McCluskey J, Godfrey DI. Human blood MAIT cell subsets defined using MR1 tetramers. Immunol Cell Biol. 2018;96(5):507-25. doi: 10.1111/imcb.12021. PubMed PMID: 29437263; PMCID: PMC6446826.

9. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 2011;117(4):1250-9. doi: 10.1182/blood-2010-08-303339. PubMed PMID: 21084709.

10. Tang XZ, Jo J, Tan AT, Sandalova E, Chia A, Tan KC, Lee KH, Gehring AJ, De Libero G, Bertoletti A. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. Journal of immunology. 2013;190(7):3142-52. doi: 10.4049/jimmunol.1203218. PubMed PMID: 23447689.

11. Howson LJ, Awad W, von Borstel A, Lim HJ, McWilliam HEG, Sandoval-Romero ML, Majumdar S, Hamzeh AR, Andrews TD, McDermott DH, Murphy PM, Le Nours J, Mak JYW, Liu L, Fairlie DP, McCluskey J, Villadangos JA, Cook MC, Turner SJ, Davey MS, Ojaimi S, Rossjohn J. Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in MR1. Sci Immunol. 2020;5(49). doi: 10.1126/sciimmunol.abc9492. PubMed PMID: 32709702; PMCID: PMC8581949.

12. Pincikova T, Paquin-Proulx D, Moll M, Flodstrom-Tullberg M, Hjelte L, Sandberg JK. Severely Impaired Control of Bacterial Infections in a Patient With Cystic Fibrosis Defective in Mucosal-Associated Invariant T Cells. Chest. 2018;153(5):e93-e6. doi: 10.1016/j.chest.2018.01.020. PubMed PMID: 29731053.

13. Cosgrove C, Ussher JE, Rauch A, Gartner K, Kurioka A, Huhn MH, Adelmann K, Kang YH, Fergusson JR, Simmonds P, Goulder P, Hansen TH, Fox J, Gunthard HF, Khanna N, Powrie F, Steel A, Gazzard B, Phillips RE, Frater J, Uhlig H, Klenerman P. Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection. Blood. 2013;121(6):951-61. doi: 10.1182/blood-2012-06-436436. PubMed PMID: 23255555; PMCID: PMC3567342.

14. Leeansyah E, Ganesh A, Quigley MF, Sonnerborg A, Andersson J, Hunt PW, Somsouk M, Deeks SG, Martin JN, Moll M, Shacklett BL, Sandberg JK. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood. 2013;121(7):1124-35. doi: 10.1182/blood-2012-07-445429. PubMed PMID: 23243281; PMCID: PMC3575756.

15. Wong EB, Akilimali NA, Govender P, Sullivan ZA, Cosgrove C, Pillay M, Lewinsohn DM, Bishai WR, Walker BD, Ndung’u T, Klenerman P, Kasprowicz VO. Low levels of peripheral CD161++CD8+ mucosal associated invariant T (MAIT) cells are found in HIV and HIV/TB co-infection. PloS one. 2013;8(12):e83474. doi: 10.1371/journal.pone.0083474. PubMed PMID: 24391773; PMCID: PMC3877057.

16. Fernandez CS, Amarasena T, Kelleher AD, Rossjohn J, McCluskey J, Godfrey DI, Kent SJ. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol Cell Biol. 2015;93(2):177-88. doi: 10.1038/icb.2014.91. PubMed PMID: 25348935.

17. Freeman ML, Morris SR, Lederman MM. CD161 Expression on Mucosa-Associated Invariant T Cells is Reduced in HIV-Infected Subjects Undergoing Antiretroviral Therapy Who Do Not Recover CD4(+) T Cells. Pathog Immun. 2017;2(3):335-51. doi: 10.20411/pai.v2i3.136. PubMed PMID: 28868514; PMCID: PMC5578469.

18. Serrano-Villar S, Perez-Elias MJ, Dronda F, Casado JL, Moreno A, Royuela A, Perez-Molina JA, Sainz T, Navas E, Hermida JM, Quereda C, Moreno S. Increased risk of serious non-AIDS-related events in HIV-infected subjects on antiretroviral therapy associated with a low CD4/CD8 ratio. PloS one. 2014;9(1):e85798. doi: 10.1371/journal.pone.0085798. PubMed PMID: 24497929; PMCID: PMC3907380.

19. Serrano-Villar S, Sainz T, Lee SA, Hunt PW, Sinclair E, Shacklett BL, Ferre AL, Hayes TL, Somsouk M, Hsue PY, Van Natta ML, Meinert CL, Lederman MM, Hatano H, Jain V, Huang Y, Hecht FM, Martin JN, McCune JM, Moreno S, Deeks SG. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS pathogens. 2014;10(5):e1004078. doi: 10.1371/journal.ppat.1004078. PubMed PMID: 24831517; PMCID: PMC4022662.

20. Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z, Eckle SB, Uldrich AP, Birkinshaw RW, Patel O, Kostenko L, Meehan B, Kedzierska K, Liu L, Fairlie DP, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J, Kjer-Nielsen L. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. The Journal of experimental medicine. 2013;210(11):2305-20. doi: 10.1084/jem.20130958. PubMed PMID: 24101382; PMCID: PMC3804952.

21. Lederman MM, Calabrese L, Funderburg NT, Clagett B, Medvik K, Bonilla H, Gripshover B, Salata RA, Taege A, Lisgaris M, McComsey GA, Kirchner E, Baum J, Shive C, Asaad R, Kalayjian RC, Sieg SF, Rodriguez B. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells. The Journal of infectious diseases. 2011;204(8):1217-26. doi: 10.1093/infdis/jir507. PubMed PMID: 21917895; PMCID: PMC3218674.

22. Shive CL, Clagett B, McCausland MR, Mudd JC, Funderburg NT, Freeman ML, Younes SA, Ferrari BM, Rodriguez B, McComsey GA, Calabrese LH, Sieg SF, Lederman MM. Inflammation Perturbs the IL-7 Axis, Promoting Senescence and Exhaustion that Broadly Characterize Immune Failure in Treated HIV Infection. Journal of acquired immune deficiency syndromes. 2016;71(5):483-92. doi: 10.1097/QAI.0000000000000913. PubMed PMID: 26627102; PMCID: PMC4788576.

23. Ferrari B, Da Silva AC, Liu KH, Saidakova EV, Korolevskaya LB, Shmagel KV, Shive C, Pacheco Sanchez G, Retuerto M, Sharma AA, Ghneim K, Noel-Romas L, Rodriguez B, Ghannoum MA, Hunt PP, Deeks SG, Burgener AD, Jones DP, Dobre MA, Marconi VC, Sekaly RP, Younes SA. Gut-derived bacterial toxins impair memory CD4+ T cell mitochondrial function in HIV-1 infection. J Clin Invest. 2022;132(9). doi: 10.1172/JCI149571. PubMed PMID: 35316209; PMCID: PMC9057623.

24. Nganou-Makamdop K, Talla A, Sharma AA, Darko S, Ransier A, Laboune F, Chipman JG, Beilman GJ, Hoskuldsson T, Fourati S, Schmidt TE, Arumugam S, Lima NS, Moon D, Callisto S, Schoephoerster J, Tomalka J, Mugyenyi P, Ssali F, Muloma P, Ssengendo P, Leda AR, Cheu RK, Flynn JK, Morou A, Brunet-Ratnasingham E, Rodriguez B, Lederman MM, Kaufmann DE, Klatt NR, Kityo C, Brenchley JM, Schacker TW, Sekaly RP, Douek DC. Translocated microbiome composition determines immunological outcome in treated HIV infection. Cell. 2021;184(15):3899-914 e16. doi: 10.1016/j.cell.2021.05.023. PubMed PMID: 34237254; PMCID: PMC8316372.

25. Funderburg NT, Shive CL, Chen Z, Tatsuoka C, Bowman ER, Longenecker CT, McComsey GA, Clagett BM, Dorazio D, Freeman ML, Sieg SF, Moisi D, Anthony DD, Jacobson JM, Stein SL, Calabrese LH, Landay A, Flexner C, Crawford KW, Capparelli EV, Rodriguez B, Lederman MM. Interleukin 6 Blockade With Tocilizumab Diminishes Indices of Inflammation That Are Linked to Mortality in Treated Human Immunodeficiency Virus Infection. Clin Infect Dis. 2023;77(2):272-9. doi: 10.1093/cid/ciad199. PubMed PMID: 37011013; PMCID: PMC10371305.

26. Roederer M, Nozzi JL, Nason MC. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A. 2011;79(2):167-74. doi: 10.1002/cyto.a.21015. PubMed PMID: 21265010; PMCID: PMC3072288.

27. Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SB, Meehan B, Chen Z, Whittle B, Liu L, Fairlie DP, Goodnow CC, McCluskey J, Rossjohn J, Uldrich AP, Pellicci DG, Godfrey DI. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. The Journal of experimental medicine. 2015;212(7):1095-108. doi: 10.1084/jem.20142110. PubMed PMID: 26101265; PMCID: PMC4493408.

28. Souter MNT, Awad W, Li S, Pediongco TJ, Meehan BS, Meehan LJ, Tian Z, Zhao Z, Wang H, Nelson A, Le Nours J, Khandokar Y, Praveena T, Wubben J, Lin J, Sullivan LC, Lovrecz GO, Mak JYW, Liu L, Kostenko L, Kedzierska K, Corbett AJ, Fairlie DP, Brooks AG, Gherardin NA, Uldrich AP, Chen Z, Rossjohn J, Godfrey DI, McCluskey J, Pellicci DG, Eckle SBG. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. The Journal of experimental medicine. 2022;219(9). doi: 10.1084/jem.20210828. PubMed PMID: 36018322; PMCID: PMC9424912.

29. Kim J, Seki E. Hyaluronan in liver fibrosis: basic mechanisms, clinical implications, and therapeutic targets. Hepatol Commun. 2023;7(4). doi: 10.1097/HC9.0000000000000083. PubMed PMID: 36930869; PMCID: PMC10027054.

30. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, Blazar BR, Rodriguez B, Teixeira-Johnson L, Landay A, Martin JN, Hecht FM, Picker LJ, Lederman MM, Deeks SG, Douek DC. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365-71. doi: 10.1038/nm1511. PubMed PMID: 17115046.

31. Sandler NG, Douek DC. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat Rev Microbiol. 2012;10(9):655-66. doi: 10.1038/nrmicro2848. PubMed PMID: 22886237.

32. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. doi: 10.1093/nar/28.1.27. PubMed PMID: 10592173; PMCID: PMC102409.

33. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587-D92. doi: 10.1093/nar/gkac963. PubMed PMID: 36300620; PMCID: PMC9825424.

34. Luo Z, Health SL, Li M, Yang H, Wu Y, Collins M, Deeks SG, Martin JN, Scott A, Jiang W. Variation in blood microbial lipopolysaccharide (LPS) contributes to immune reconstitution in response to suppressive antiretroviral therapy in HIV. EBioMedicine. 2022;80:104037. doi: 10.1016/j.ebiom.2022.104037. PubMed PMID: 35500539; PMCID: PMC9065923.

35. Chiba A, Tamura N, Yoshikiyo K, Murayama G, Kitagaichi M, Yamaji K, Takasaki Y, Miyake S. Activation status of mucosal-associated invariant T cells reflects disease activity and pathology of systemic lupus erythematosus. Arthritis Res Ther. 2017;19(1):58. doi: 10.1186/s13075-017-1257-5. PubMed PMID: 28288675; PMCID: PMC5348792.

36. Shive CL, Mudd JC, Funderburg NT, Sieg SF, Kyi B, Bazdar DA, Mangioni D, Gori A, Jacobson JM, Brooks AD, Hardacre J, Ammori J, Estes JD, Schacker TW, Rodriguez B, Lederman MM. Inflammatory cytokines drive CD4+ T-cell cycling and impaired responsiveness to interleukin 7: implications for immune failure in HIV disease. The Journal of infectious diseases. 2014;210(4):619-29. doi: 10.1093/infdis/jiu125. PubMed PMID: 24585897; PMCID: PMC4172041.

37. Leeansyah E, Svard J, Dias J, Buggert M, Nystrom J, Quigley MF, Moll M, Sonnerborg A, Nowak P, Sandberg JK. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS pathogens. 2015;11(8):e1005072. doi: 10.1371/journal.ppat.1005072. PubMed PMID: 26295709; PMCID: PMC4546682.

38. Sortino O, Richards E, Dias J, Leeansyah E, Sandberg JK, Sereti I. IL-7 treatment supports CD8+ mucosa-associated invariant T-cell restoration in HIV-1-infected patients on antiretroviral therapy. AIDS. 2018;32(6):825-8. doi: 10.1097/QAD.0000000000001760. PubMed PMID: 29543654; PMCID: PMC6056340.

39. Klatt NR, Funderburg NT, Brenchley JM. Microbial translocation, immune activation, and HIV disease. Trends in microbiology. 2013;21(1):6-13. doi: 10.1016/j.tim.2012.09.001. PubMed PMID: 23062765; PMCID: PMC3534808.

40. Lederman MM, Funderburg NT, Sekaly RP, Klatt NR, Hunt PW. Residual immune dysregulation syndrome in treated HIV infection. Advances in immunology. 2013;119:51-83. doi: 10.1016/B978-0-12-407707-2.00002-3. PubMed PMID: 23886064; PMCID: PMC4126613.

41. Freeman ML, Shive CL, Nguyen TP, Younes SA, Panigrahi S, Lederman MM. Cytokines and T-Cell Homeostasis in HIV Infection. The Journal of infectious diseases. 2016;214 Suppl 2(Suppl 2):S51-7. doi: 10.1093/infdis/jiw287. PubMed PMID: 27625431; PMCID: PMC6373575.

42. Vinton C, Wu F, Rossjohn J, Matsuda K, McCluskey J, Hirsch V, Price DA, Brenchley JM. Mucosa-Associated Invariant T Cells Are Systemically Depleted in Simian Immunodeficiency Virus-Infected Rhesus Macaques. Journal of virology. 2016;90(9):4520-9. doi: 10.1128/JVI.02876-15. PubMed PMID: 26912615; PMCID: PMC4836342.

43. Zhang M, Ming S, Gong S, Liang S, Luo Y, Liang Z, Cao C, Lao J, Shang Y, Li X, Wang M, Zhong G, Xu L, Wu M, Wu Y. Activation-Induced Cell Death of Mucosal-Associated Invariant T Cells Is Amplified by OX40 in Type 2 Diabetic Patients. Journal of immunology. 2019;203(10):2614-20. doi: 10.4049/jimmunol.1900367. PubMed PMID: 31578271.

44. Cassius C, Branchtein M, Battistella M, Amode R, Lepelletier C, Jachiet M, de Masson A, Frumholtz L, Chasset F, Amoura Z, Mathian A, Samri A, Monfort JB, Bachmeyer C, Bengoufa D, Cordoliani F, Bagot M, Bensussan A, Bouaziz JD, Le Buanec H. Persistent deficiency of mucosal-associated invariant T cells during dermatomyositis. Rheumatology (Oxford). 2020;59(9):2282-6. doi: 10.1093/rheumatology/kez564. PubMed PMID: 31846040.

45. Lamichhane R, Galvin H, Hannaway RF, de la Harpe SM, Munro F, Tyndall JD, Vernall AJ, McCall JL, Husain M, Ussher JE. Type I interferons are important co-stimulatory signals during T cell receptor mediated human MAIT cell activation. Eur J Immunol. 2020;50(2):178-91. doi: 10.1002/eji.201948279. PubMed PMID: 31608441.

46. Maleki KT, Tauriainen J, Garcia M, Kerkman PF, Christ W, Dias J, Wigren Bystrom J, Leeansyah E, Forsell MN, Ljunggren HG, Ahlm C, Bjorkstrom NK, Sandberg JK, Klingstrom J. MAIT cell activation is associated with disease severity markers in acute hantavirus infection. Cell Rep Med. 2021;2(3):100220. doi: 10.1016/j.xcrm.2021.100220. PubMed PMID: 33763658; PMCID: PMC7974553.

47. Gracey E, Qaiyum Z, Almaghlouth I, Lawson D, Karki S, Avvaru N, Zhang Z, Yao Y, Ranganathan V, Baglaenko Y, Inman RD. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann Rheum Dis. 2016;75(12):2124-32. doi: 10.1136/annrheumdis-2015-208902. PubMed PMID: 27165176.

48. Sattler A, Dang-Heine C, Reinke P, Babel N. IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions. Eur J Immunol. 2015;45(8):2286-98. doi: 10.1002/eji.201445313. PubMed PMID: 26046663.

49. van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, Kulicke C, de Lara C, Cole S, Vasanawathana S, Limpitikul W, Malasit P, Young D, Denney L, consortium S-H, Moore MD, Fabris P, Giordani MT, Oo YH, Laidlaw SM, Dustin LB, Ho LP, Thompson FM, Ramamurthy N, Mongkolsapaya J, Willberg CB, Screaton GR, Klenerman P. MAIT cells are activated during human viral infections. Nature communications. 2016;7:11653. doi: 10.1038/ncomms11653. PubMed PMID: 27337592; PMCID: PMC4931007.

50. Rha MS, Han JW, Kim JH, Koh JY, Park HJ, Kim SI, Kim MS, Lee JG, Lee HW, Lee DH, Kim W, Park JY, Joo DJ, Park SH, Shin EC. Human liver CD8(+) MAIT cells exert TCR/MR1-independent innate-like cytotoxicity in response to IL-15. J Hepatol. 2020;73(3):640-50. doi: 10.1016/j.jhep.2020.03.033. PubMed PMID: 32247824.

51. Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R, de Lara C, Mettke E, Kurioka A, Hansen TH, Klenerman P, Willberg CB. CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur J Immunol. 2014;44(1):195-203. doi: 10.1002/eji.201343509. PubMed PMID: 24019201; PMCID: PMC3947164.

52. Lamichhane R, Munro F, Harrop TWR, de la Harpe SM, Dearden PK, Vernall AJ, McCall JL, Ussher JE. Human liver-derived MAIT cells differ from blood MAIT cells in their metabolism and response to TCR-independent activation. Eur J Immunol. 2021;51(4):879-92. doi: 10.1002/eji.202048830. PubMed PMID: 33368232.

53. Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, Ledergerber B, Lundgren J, Neuhaus J, Nixon D, Paton NI, Neaton JD, Group ISS. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS medicine. 2008;5(10):e203. doi: 10.1371/journal.pmed.0050203. PubMed PMID: 18942885; PMCID: PMC2570418.

54. Tenorio AR, Zheng Y, Bosch RJ, Krishnan S, Rodriguez B, Hunt PW, Plants J, Seth A, Wilson CC, Deeks SG, Lederman MM, Landay AL. Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. The Journal of infectious diseases. 2014;210(8):1248-59. doi: 10.1093/infdis/jiu254. PubMed PMID: 24795473; PMCID: PMC4192039.

55. Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, Robinson J, Huang Y, Epling L, Martin JN, Deeks SG, Meinert CL, Van Natta ML, Jabs DA, Lederman MM. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. The Journal of infectious diseases. 2014;210(8):1228-38. doi: 10.1093/infdis/jiu238. PubMed PMID: 24755434; PMCID: PMC4192038.

56. Kawabe T, Yi J, Sprent J. Homeostasis of Naive and Memory T Lymphocytes. Cold Spring Harb Perspect Biol. 2021;13(9). doi: 10.1101/cshperspect.a037879. PubMed PMID: 33753403; PMCID: PMC8411951.

57. Han F, Gulam MY, Zheng Y, Zulhaimi NS, Sia WR, He D, Ho A, Hadadi L, Liu Z, Qin P, Lobie PE, Kamarulzaman A, Wang LF, Sandberg JK, Lewin SR, Rajasuriar R, Leeansyah E. IL7RA single nucleotide polymorphisms are associated with the size and function of the MAIT cell population in treated HIV-1 infection. Front Immunol. 2022;13:985385. doi: 10.3389/fimmu.2022.985385. PubMed PMID: 36341446; PMCID: PMC9632172.

58. Merlini E, Cerrone M, van Wilgenburg B, Swadling L, Cannizzo ES, d’Arminio Monforte A, Klenerman P, Marchetti G. Association Between Impaired Valpha7.2+CD161++CD8+ (MAIT) and Valpha7.2+CD161-CD8+ T-Cell Populations and Gut Dysbiosis in Chronically HIV- and/or HCV-Infected Patients. Front Microbiol. 2019;10:1972. doi: 10.3389/fmicb.2019.01972. PubMed PMID: 31555223; PMCID: PMC6722213.

59. Toubal A, Kiaf B, Beaudoin L, Cagninacci L, Rhimi M, Fruchet B, da Silva J, Corbett AJ, Simoni Y, Lantz O, Rossjohn J, McCluskey J, Lesnik P, Maguin E, Lehuen A. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nature communications. 2020;11(1):3755. doi: 10.1038/s41467-020-17307-0. PubMed PMID: 32709874; PMCID: PMC7381641.

60. Luo Z, Alekseyenko AV, Ogunrinde E, Li M, Li QZ, Huang L, Tsao BP, Kamen DL, Oates JC, Li Z, Gilkeson GS, Jiang W. Rigorous Plasma Microbiome Analysis Method Enables Disease Association Discovery in Clinic. Front Microbiol. 2020;11:613268. doi: 10.3389/fmicb.2020.613268. PubMed PMID: 33488555; PMCID: PMC7820181.

61. Serrano-Villar S, Sanchez-Carrillo S, Talavera-Rodriguez A, Lelouvier B, Gutierrez C, Vallejo A, Servant F, Bernadino JI, Estrada V, Madrid N, Gosalbes MJ, Bisbal O, de Lagarde M, Martinez-Sanz J, Ron R, Herrera S, Moreno S, Ferrer M. Blood Bacterial Profiles Associated With Human Immunodeficiency Virus Infection and Immune Recovery. The Journal of infectious diseases. 2021;223(3):471-81. doi: 10.1093/infdis/jiaa379. PubMed PMID: 32601702.

62. Merlini E, Bai F, Bellistri GM, Tincati C, d’Arminio Monforte A, Marchetti G. Evidence for polymicrobic flora translocating in peripheral blood of HIV-infected patients with poor immune response to antiretroviral therapy. PloS one. 2011;6(4):e18580. doi: 10.1371/journal.pone.0018580. PubMed PMID: 21494598; PMCID: PMC3073938.

63. Kasten KR, Prakash PS, Unsinger J, Goetzman HS, England LG, Cave CM, Seitz AP, Mazuski CN, Zhou TT, Morre M, Hotchkiss RS, Hildeman DA, Caldwell CC. Interleukin-7 (IL-7) treatment accelerates neutrophil recruitment through gamma delta T-cell IL-17 production in a murine model of sepsis. Infect Immun. 2010;78(11):4714-22. doi: 10.1128/IAI.00456-10. PubMed PMID: 20823197; PMCID: PMC2976361.

64. Michel ML, Pang DJ, Haque SF, Potocnik AJ, Pennington DJ, Hayday AC. Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing gammadelta cells. Proc Natl Acad Sci U S A. 2012;109(43):17549-54. doi: 10.1073/pnas.1204327109. PubMed PMID: 23047700; PMCID: PMC3491488.

65. Reeder KM, Dunaway CW, Blackburn JP, Yu Z, Matalon S, Hastie AT, Ampleford EJ, Meyers DA, Steele C. The common gamma-chain cytokine IL-7 promotes immunopathogenesis during fungal asthma. Mucosal Immunol. 2018;11(5):1352-62. doi: 10.1038/s41385-018-0028-1. PubMed PMID: 29907867; PMCID: PMC6319622.

66. Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 2012;30:647-75. doi: 10.1146/annurev-immunol-020711-075053. PubMed PMID: 22224763.

67. Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M, Levy E, Dusseaux M, Meyssonnier V, Premel V, Ngo C, Riteau B, Duban L, Robert D, Huang S, Rottman M, Soudais C, Lantz O. Antimicrobial activity of mucosal-associated invariant T cells. Nature immunology. 2010;11(8):701-8. doi: 10.1038/ni.1890. PubMed PMID: 20581831.

68. Leeansyah E, Boulouis C, Kwa ALH, Sandberg JK. Emerging Role for MAIT Cells in Control of Antimicrobial Resistance. Trends in microbiology. 2021;29(6):504-16. doi: 10.1016/j.tim.2020.11.008. PubMed PMID: 33353796.

69. Pankhurst TE, Buick KH, Lange JL, Marshall AJ, Button KR, Palmer OR, Farrand KJ, Montgomerie I, Bird TW, Mason NC, Kuang J, Compton BJ, Comoletti D, Salio M, Cerundolo V, Quinones-Mateu ME, Painter GF, Hermans IF, Connor LM. MAIT cells activate dendritic cells to promote T(FH) cell differentiation and induce humoral immunity. Cell Rep. 2023;42(4):112310. doi: 10.1016/j.celrep.2023.112310. PubMed PMID: 36989114; PMCID: PMC10045373.

70. Rashu R, Ninkov M, Wardell CM, Benoit JM, Wang NI, Meilleur CE, D’Agostino MR, Zhang A, Feng E, Saeedian N, Bell GI, Vahedi F, Hess DA, Barr SD, Troyer RM, Kang CY, Ashkar AA, Miller MS, Haeryfar SMM. Targeting the MR1-MAIT cell axis improves vaccine efficacy and affords protection against viral pathogens. PLoS pathogens. 2023;19(6):e1011485. doi: 10.1371/journal.ppat.1011485. PubMed PMID: 37384813; PMCID: PMC10337970.

71. Crum-Cianflone NF, Wallace MR. Vaccination in HIV-infected adults. AIDS Patient Care STDS. 2014;28(8):397-410. doi: 10.1089/apc.2014.0121. PubMed PMID: 25029589; PMCID: PMC4117268.

72. Vardinon N, Handsher R, Burke M, Zacut V, Yust I. Poliovirus vaccination responses in HIV-infected patients: correlation with T4 cell counts. The Journal of infectious diseases. 1990;162(1):238-41. doi: 10.1093/infdis/162.1.238. PubMed PMID: 1972382.

73. Kroon FP, van Dissel JT, Ravensbergen E, Nibbering PH, van Furth R. Impaired antibody response after immunization of HIV-infected individuals with the polysaccharide vaccine against Salmonella typhi (Typhim-Vi). Vaccine. 1999;17(23-24):2941-5. doi: 10.1016/s0264-410x(99)00167-x. PubMed PMID: 10462227.

74. Lujan-Zilbermann J, Warshaw MG, Williams PL, Spector SA, Decker MD, Abzug MJ, Heckman B, Manzella A, Kabat B, Jean-Philippe P, Nachman S, Siberry GK, International Maternal Pediatric Adolescent ACTGPPT. Immunogenicity and safety of 1 vs 2 doses of quadrivalent meningococcal conjugate vaccine in youth infected with human immunodeficiency virus. J Pediatr. 2012;161(4):676-81 e2. doi: 10.1016/j.jpeds.2012.04.005. PubMed PMID: 22622049; PMCID: PMC3434315.

Most read articles by the same author(s)