Why Does Doxycycline Pose a Relatively Low Risk for Promotion of Clostridioides difficile Infection?

Main Article Content

Dongyan Xu
Thriveen S.C. Mana
Jennifer L. Cadnum
Abhishek Deshpande
Faezeh Afsari
Naseer Sangwan
Curtis J. Donskey

Abstract

Background:  Clinical studies suggest that doxycycline poses a low risk for promotion of Clostridioides difficileinfection, but the microbiologic explanation for this finding is unclear. 


Methods:  Mice treated with oral doxycycline, oral azithromycin, subcutaneous ceftriaxone, doxycycline plus ceftriaxone, or azithromycin plus ceftriaxone were challenged with 104 colony-forming units of 2 different C. difficilestrains on day 2 of 5 of treatment. The concentration of C. difficile was measured in stool 2 and 5 days after challenge. The impact of the treatments on the microbiota was assessed by sequencing.


 Results:  Doxycycline and azithromycin treatment did not promote colonization by either C. difficile strain in comparison to saline controls. Doxycycline treatment significantly reduced ceftriaxone-induced overgrowth of a C. difficile strain with doxycycline minimum-inhibitory concentration (MIC) of 0.06 µg/mL (P<0.01) but not a strain with doxycycline MIC of 48 µg/mL (P>0.05); azithromycin treatment did not reduce ceftriaxone-induced overgrowth of either strain. 16S rRNA amplicon sequencing revealed significantly lower bacterial diversity in the stool of ceftriaxone-treated mice, in comparison to doxycycline-treated and azithromycin-treated mice.


Conclusions:  These findings suggest that doxycycline may have a low propensity to promote C. difficile colonization because it causes relatively limited alteration of the indigenous microbiota that provide colonization resistance and because it provides inhibitory activity against some C. difficile strains.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

1. Guh AY, Mu Y, Winston LG, Johnston H, Olson D, Farley MM, Wilson LE, Holzbauer SM, Phipps EC, Dumyati GK, Beldavs ZG, Kainer MA, Karlsson M, Gerding DN, McDonald LC, Emerging Infections Program Clostridioides difficile Infection Working G. Trends in U.S. Burden of Clostridioides difficile Infection and Outcomes. N Engl J Med. 2020;382(14):1320-30. doi: 10.1056/NEJMoa1910215. PubMed PMID: 32242357; PMCID: PMC7861882.

2. Deshpande A, Pasupuleti V, Thota P, Pant C, Rolston DD, Sferra TJ, Hernandez AV, Donskey CJ. Community-associated Clostridium difficile infection and antibiotics: a meta-analysis. J Antimicrob Chemother. 2013;68(9):1951-61. doi: 10.1093/jac/dkt129. PubMed PMID: 23620467.

3. Donskey CJ, Kundrapu S, Deshpande A. Colonization versus carriage of Clostridium difficile. Infect Dis Clin North Am. 2015;29(1):13-28. doi: 10.1016/j.idc.2014.11.001. PubMed PMID: 25595843.

4. Owens RC, Jr., Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis. 2008;46 Suppl 1:S19-31. doi: 10.1086/521859. PubMed PMID: 18177218.

5. Brown KA, Langford B, Schwartz KL, Diong C, Garber G, Daneman N. Antibiotic Prescribing Choices and Their Comparative C. Difficile Infection Risks: A Longitudinal Case-Cohort Study. Clin Infect Dis. 2021;72(5):836-44. doi: 10.1093/cid/ciaa124. PubMed PMID: 32069358; PMCID: PMC7935390.

6. Doernberg SB, Winston LG, Deck DH, Chambers HF. Does doxycycline protect against development of Clostridium difficile infection? Clin Infect Dis. 2012;55(5):615-20. doi: 10.1093/cid/cis457. PubMed PMID: 22563022; PMCID: PMC3491851.

7. Tariq R, Cho J, Kapoor S, Orenstein R, Singh S, Pardi DS, Khanna S. Low Risk of Primary Clostridium difficile Infection With Tetracyclines: A Systematic Review and Metaanalysis. Clin Infect Dis. 2018;66(4):514-22. doi: 10.1093/cid/cix833. PubMed PMID: 29401273.

8. Tartof SY, Rieg GK, Wei R, Tseng HF, Jacobsen SJ, Yu KC. A Comprehensive Assessment Across the Healthcare Continuum: Risk of Hospital-Associated Clostridium difficile Infection Due to Outpatient and Inpatient Antibiotic Exposure. Infect Control Hosp Epidemiol. 2015;36(12):1409-16. doi: 10.1017/ice.2015.220. PubMed PMID: 26387888.

9. Nord CE, Heimdahl A. Impact of orally administered antimicrobial agents on human oropharyngeal and colonic microflora. J Antimicrob Chemother. 1986;18 Suppl C:159-64. doi: 10.1093/jac/18.supplement_c.159. PubMed PMID: 3804892.

10. Rashid MU, Panagiotidis G, Backstrom T, Weintraub A, Nord CE. Ecological impact of doxycycline at low dose on normal oropharyngeal and intestinal microflora. Int J Antimicrob Agents. 2013;41(4):352-7. doi: 10.1016/j.ijantimicag.2012.11.014. PubMed PMID: 23332619.

11. Adams DA, Riggs MM, Donskey CJ. Effect of fluoroquinolone treatment on growth of and toxin production by epidemic and nonepidemic clostridium difficile strains in the cecal contents of mice. Antimicrob Agents Chemother. 2007;51(8):2674-8. doi: 10.1128/AAC.01582-06. PubMed PMID: 17562807; PMCID: PMC1932513.

12. Kundrapu S, Sunkesula VC, Jury LA, Cadnum JL, Nerandzic MM, Musuuza JS, Sethi AK, Donskey CJ. Do piperacillin/tazobactam and other antibiotics with inhibitory activity against Clostridium difficile reduce the risk for acquisition of C. difficile colonization? BMC Infect Dis. 2016;16:159. doi: 10.1186/s12879-016-1514-2. PubMed PMID: 27091232; PMCID: PMC4835867.

13. Tomas ME, Mana TSC, Wilson BM, Nerandzic MM, Joussef-Pina S, Quinones-Mateu ME, Donskey CJ. Tapering Courses of Oral Vancomycin Induce Persistent Disruption of the Microbiota That Provide Colonization Resistance to Clostridium difficile and Vancomycin-Resistant Enterococci in Mice. Antimicrob Agents Chemother. 2018;62(5). doi: 10.1128/AAC.02237-17. PubMed PMID: 29530853; PMCID: PMC5923165.

14. Wayne PA. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: CLSI; 2011 [cited 32(3) M100-S20].

>15. Hoyen CK, Pultz NJ, Paterson DL, Aron DC, Donskey CJ. Effect of parenteral antibiotic administration on establishment of intestinal colonization in mice by Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2003;47(11):3610-2. doi: 10.1128/AAC.47.11.3610-3612.2003. PubMed PMID: 14576127; PMCID: PMC253805.

16. Helsley RN, Miyata T, Kadam A, Varadharajan V, Sangwan N, Huang EC, Banerjee R, Brown AL, Fung KK, Massey WJ, Neumann C, Orabi D, Osborn LJ, Schugar RC, McMullen MR, Bellar A, Poulsen KL, Kim A, Pathak V, Mrdjen M, Anderson JT, Willard B, McClain CJ, Mitchell M, McCullough AJ, Radaeva S, Barton B, Szabo G, Dasarathy S, Garcia-Garcia JC, Rotroff DM, Allende DS, Wang Z, Hazen SL, Nagy LE, Brown JM. Gut microbial trimethylamine is elevated in alcohol-associated hepatitis and contributes to ethanol-induced liver injury in mice. Elife. 2022;11. doi: 10.7554/eLife.76554. PubMed PMID: 35084335; PMCID: PMC8853661.

17. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-3. doi: 10.1038/nmeth.3869. PubMed PMID: 27214047; PMCID: PMC4927377.

18. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217. PubMed PMID: 23630581; PMCID: PMC3632530.

19. Wickham H. ggplot2: Elegant Graphics for Data Analysis. springer; 2016.

20. Benjamini Y. Discovering the false discovery rate. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2010;72(4):405-16.

21. Hoverstad T, Carlstedt-Duke B, Lingaas E, Norin E, Saxerholt H, Steinbakk M, Midtvedt T. Influence of oral intake of seven different antibiotics on faecal short-chain fatty acid excretion in healthy subjects. Scand J Gastroenterol. 1986;21(8):997-1003. doi: 10.3109/00365528608996411. PubMed PMID: 3775265.

22. Saxerholt H, Carlstedt-Duke B, Hoverstad T, Lingaas E, Norin KE, Steinbakk M, Midtvedt T. Influence of antibiotics on the faecal excretion of bile pigments in healthy subjects. Scand J Gastroenterol. 1986;21(8):991-6. doi: 10.3109/00365528608996410. PubMed PMID: 3775264.

23. Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis. 2001;1(2):101-14. doi: 10.1016/S1473-3099(01)00066-4. PubMed PMID: 11871461.

24. Di Bella S, Taglietti F, Petrosillo N. Are there reasons to prefer tetracyclines to macrolides in older patients with community-acquired pneumonia? Antimicrob Agents Chemother. 2013;57(8):4093. doi: 10.1128/AAC.00828-13. PubMed PMID: 23858063; PMCID: PMC3719784.

25. Herp S, Brugiroux S, Garzetti D, Ring D, Jochum LM, Beutler M, Eberl C, Hussain S, Walter S, Gerlach RG, Ruscheweyh HJ, Huson D, Sellin ME, Slack E, Hanson B, Loy A, Baines JF, Rausch P, Basic M, Bleich A, Berry D, Stecher B. Mucispirillum schaedleri Antagonizes Salmonella Virulence to Protect Mice against Colitis. Cell Host Microbe. 2019;25(5):681-94 e8. doi: 10.1016/j.chom.2019.03.004. PubMed PMID: 31006637.

26. Herp S, Durai Raj AC, Salvado Silva M, Woelfel S, Stecher B. The human symbiont Mucispirillum schaedleri: causality in health and disease. Med Microbiol Immunol. 2021;210(4):173-9. doi: 10.1007/s00430-021-00702-9. PubMed PMID: 34021796.

27. Abujamel T, Cadnum JL, Jury LA, Sunkesula VC, Kundrapu S, Jump RL, Stintzi AC, Donskey CJ. Defining the vulnerable period for re-establishment of Clostridium difficile colonization after treatment of C. difficile infection with oral vancomycin or metronidazole. PLoS One. 2013;8(10):e76269. doi: 10.1371/journal.pone.0076269. PubMed PMID: 24098459; PMCID: PMC3788714.

Most read articles by the same author(s)