Impact of Tigecycline Versus Other Antibiotics on the Fecal Metabolome and on Colonization Resistance to Clostridium difficile in Mice
Main Article Content
Abstract
Background: The glycylcycline antibiotic tigecycline may have a relatively low propensity to promote Clostridium difficile infection in part because it causes less disruption of the indigenous intestinal microbiota than other broad-spectrum antibiotics. We used a mouse model to compare the compare the effects of tigecycline versus other commonly used antibiotics on colonization resistance to C. difficile and on metabolic functions of the intestinal microbiota.
Methods: To assess in vivo colonization resistance to C. difficile, mice were challenged with oral C. difficile spores 1, 7, or 12 days after completion of 3 days of treatment with subcutaneous saline, tigecycline, ceftriaxone, piperacillin-tazobactam, or linezolid. Levels of bacterial metabolites in fecal specimens of mice treated with the same antibiotics were analyzed using non-targeted metabolic profiling by gas chromatograph (GC)/mass spectrometry (MS) and ultra-high performance liquid chromatography-tandem MS (UPLC-MS/MS).
Results: All of the antibiotics disrupted colonization resistance to C. difficile when challenge occurred 2 days after treatment. Only piperacillin/tazobactam and ceftriaxone-treated mice had disturbed colonization resistance at 7 days after treatment. All of the antibiotics altered fecal metabolites in comparison to controls, but tigecycline caused significantly less alteration than the other antibiotics, including less suppression of multiple amino acids, bile acids, and lipid metabolites.
Conclusions: Tigecycline and linezolid caused transient disruption of colonization resistance to C. difficile, whereas ceftriaxone and piperacillin/tazobactam caused disruption that persisted for 7 days post-treatment. Tigecycline caused less profound alteration of fecal bacterial metabolites than the other antibiotics, suggesting that the relatively short period of disruption of colonization resistance might be related in part to reduced alteration of the metabolic functions of the microbiota
Downloads
Article Details
Pathogens and Immunity abides by Creative Commons BY 4.0:
http://creativecommons.org/licenses/by/4.0/
This license lets others distribute, remix, tweak, and build upon your work for any lawful purpose, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials. The authors maintain copyright of their materal.
*Due to a template error on our pdfs, articles published from May 20, 2016 to June 24, 2022 incorrectly state the copyright is held by Pathogens and Immunity. Copyright of all articles is held by the authors of each article as noted in the above copyright policy.
References
1. Owens RC, Jr, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis. 2008;46 Suppl 1:S19-31. PubMed PMID: 18177218. doi: 10.1086/521859
2. Kundrapu S, Sunkesula VC, Jury LA, Cadnum JL, Nerandzic MM, Musuuza JS, Sethi AK, Donskey CJ. Do piperacillin/tazobactam and other antibiotics with inhibitory activity against Clostridium difficile reduce the risk for acquisition of C. difficile colonization? BMC Infect Dis. 2016;16:159. PubMed PMID: 27091232. PubMed Central PMCID: 4835867. doi: 10.1186/s12879-016-1514-2
3. Dubberke ER, Reske KA, Seiler S, Hink T, Kwon JH, Burnham CA. Risk Factors for Acquisition and Loss of Clostridium difficile Colonization in Hospitalized Patients. Antimicrob Agents Chemother. 2015;59(8):4533-43. PubMed PMID: 25987626. PubMed Central PMCID: 4505269. doi: 10.1128/AAC.00642-15
4. Nord CE, Sillerstrom E, Wahlund E. Effect of tigecycline on normal oropharyngeal and intestinal microflora. Antimicrob Agents Chemother. 2006;50(10):3375-80. PubMed PMID: 17005820. PubMed Central PMCID: 1610089. doi: 10.1128/AAC.00373-06
5. Baines SD, Saxton K, Freeman J, Wilcox MH. Tigecycline does not induce proliferation or cytotoxin production by epidemic Clostridium difficile strains in a human gut model. J Antimicrob Chemother. 2006;58(5):1062-5. PubMed PMID: 17030519. doi: 10.1093/jac/dkl364
6. Jump RL, Li Y, Pultz MJ, Kypriotakis G, Donskey CJ. Tigecycline exhibits inhibitory activity against Clostridium difficile in the colon of mice and does not promote growth or toxin production. Antimicrob Agents Chemother. 2011;55(2):546-9. PubMed PMID: 21135181. PubMed Central PMCID: 3028805. doi: 10.1128/AAC.00839-10
7. Bassis CM, Theriot CM, Young VB. Alteration of the murine gastrointestinal microbiota by tigecycline leads to increased susceptibility to Clostridium difficile infection. Antimicrob Agents Chemother. 2014;58(5):2767-74. PubMed PMID: 24590475. PubMed Central PMCID: 3993203. doi: 10.1128/AAC.02262-13
8. Theriot CM, Schumacher CA, Bassis CM, Seekatz AM, Young VB. Effects of tigecycline and vancomycin administration on established Clostridium difficile infection. Antimicrob Agents Chemother. 2015;59(3):1596-604. PubMed PMID: 25547352. PubMed Central PMCID: 4325817. doi: 10.1128/AAC.04296-14
9. Jump RL, Polinkovsky A, Hurless K, Sitzlar B, Eckart K, Tomas M, Deshpande A, Nerandzic MM, Donskey CJ. Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice. PLOS ONE. 2014;9(7):e101267. PubMed PMID: 24988418. PubMed Central PMCID: 4079339. doi: 10.1371/journal.pone.0101267
10. Blaut M, Clavel T. Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr. 2007;137(3 Suppl 2):751S-5S. PubMed PMID: 17311972.
11. Nerandzic MM, Donskey CJ. Effective and reduced-cost modified selective medium for isolation of Clostridium difficile. J Clin Microbiol. 2009;47(2):397-400. PubMed PMID: 19073869. PubMed Central PMCID: 2643678. doi: 10.1128/JCM.01591-08
12. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009;81(16):6656-67. PubMed PMID: 19624122. doi: 10.1021/ac901536h
13. Dehaven CD, Evans AM, Dai H, Lawton KA. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminform. 2010;2(1):9. PubMed PMID: 20955607. PubMed Central PMCID: 2984397. doi: 10.1186/1758-2946-2-9
14. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38(Database issue):D355-60. PubMed PMID: 19880382. PubMed Central PMCID: 2808910. doi: 10.1093/nar/gkp896
15. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801-7. PubMed PMID: 23161693. PubMed Central PMCID: 3531200. doi: 10.1093/nar/gks1065
16. Yap IK, Li JV, Saric J, Martin FP, Davies H, Wang Y, Wilson ID, Nicholson JK, Utzinger J, Marchesi JR, Holmes E. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res. 2008;7(9):3718-28. PubMed PMID: 18698804. doi: 10.1021/pr700864x
17. Romick-Rosendale LE, Goodpaster AM, Hanwright PJ, Patel NB, Wheeler ET, Chona DL, Kennedy MA. NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin (Baytril). Magn Reson Chem. 2009;47 Suppl 1:S36-46. PubMed PMID: 19768747. doi: 10.1002/mrc.2511
18. Swann JR, Tuohy KM, Lindfors P, Brown DT, Gibson GR, Wilson ID, Sidaway J, Nicholson JK, Holmes E. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res. 2011;10(8):3590-603. PubMed PMID: 21591676. doi: 10.1021/pr200243t
19. Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, Goulding D, Rad R, Schreiber F, Brandt C, Deakin LJ, Pickard DJ, Duncan SH, Flint HJ, Clark TG, Parkhill J, Dougan G. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLOS Pathog. 2012;8(10):e1002995. PubMed PMID: 23133377. PubMed Central PMCID: 3486913. doi: 10.1371/journal.ppat.1002995
20. Theriot CM, Koenigsknecht MJ, Carlson PE, Jr, Hatton GE, Nelson AM, Li B, Huffnagle GB, J ZL, Young VB. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:3114. PubMed PMID: 24445449. PubMed Central PMCID: 3950275. doi: 10.1038/ncomms4114
21. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, Naidu N, Choudhury B, Weimer BC, Monack DM, Sonnenburg JL. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502(7469):96-9. PubMed PMID: 23995682. PubMed Central PMCID: 3825626. doi: 10.1038/nature12503
22. Theriot CM, Bowman AA, Young VB. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. mSphere. 2016;1(1). PubMed PMID: 27239562. PubMed Central PMCID: 4863611. doi: 10.1128/mSphere.00045-15
23. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink MR, Jenq RR, Taur Y, Sander C, Cross JR, Toussaint NC, Xavier JB, Pamer EG. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205-8. PubMed PMID: 25337874. PubMed Central PMCID: 4354891. doi: 10.1038/nature13828