LETTER

Published June 28, 2025

COMMENTS ON "EARLY ACTIVATION OF LUNG CD8+ T CELLS AFTER IMMUNIZATION WITH LIVE PLASMODIUM BERGHEI MALARIA SPOROZITES"

AUTHOR

Samiha Fatima¹

AFFILIATED INSTITUTION

¹Sargodha Medical College, Sargodha, Pakistan

CORRESPONDING AUTHOR

DOI

Samiha Fatima samihaafatima 4@gmail.com

10.20411/pai.v10i2.851

SUGGESTED CITATION

Fatima S. Comments on "Early Activation of Lung CD8+ T Cells After Immunization with Live *Plasmodium berghei* Malaria Sporozites". *Pathogens and Immunity*. 2025;10(2):146–148. doi: 10.20411/pai.v10i2.851

This comment refers to the article available at https://doi.org/10.20411/pai.v10i2.794.

DEAR EDITOR-IN-CHIEF,

The recent study by van Schuijlenburg et al [1] suggests that the lungs may serve as an active and previously underappreciated site of T-cell priming following late-arresting genetically attenuated parasites (LA-GAP) malaria vaccination. Their findings channel traditional liver-focused models and open important avenues for understanding the immunological dynamics of whole-sporozoite vaccines.

Evidence of early and strong activation of lung CD8+ T cells, including elevated production of TNF and Granzyme A, as well as expression of tissue-resident memory T cells (Trms), effector memory T cells (Tem), double negative (DN), and $\gamma\delta$ T cells are particularly noteworthy. These findings raise the possibility that lung-resident or lung- primed T cells may contribute meaningfully to protective immunity, either locally or systemically.

While the results stand strongly on their own, they also raise certain questions guiding future research. For instance, the predominance of Granzyme A over Granzyme B or perforin hints at a non-classical cytotoxic profile, potentially involving regulatory or inflammatory roles, as has been described in other infection models [2].

The use of intravenous immunization — which necessarily exposes sporozoites to the lung microenvironment — adds a valuable perspective to pulmonary immune activation.

However, it may be worthwhile to examine how alternative delivery routes such as mosquito bite or intradermal injection affect the immunological arrangement of the lungs, particularly given the differences in antigen-presenting cell recruitment and lymphatic drainage across delivery methods $[\underline{3},\underline{4}]$.

Another notable observation is the increase in PD-L1+ macrophages in the lungs, which could reflect regulatory signals that may influence T-cell activation. Learning how regulatory signals interact with effector T-cell responses could help clarify the balance between host protection and modulation of inflammation in a lung environment.

Additionally, the study's observation of sex-specific differences in Granzyme A expression and the activation of DN and $\gamma\delta$ T-cells highlights the importance of biological variability, which may help explain individual differences in vaccine responsiveness.

These results highlight the importance of lung-mediated immune responses in the prevention of malaria. Future studies that compare delivery routes and dissect the functional roles of lung-primed T-cells could clarify their contribution to protection and inform more targeted vaccine strategies.

FUNDING

The author reports no financial support for the research, authorship, and/or publication related to this article.

POTENTIAL CONFLICTS OF INTEREST

The author reports no relevant conflicts.

REFERENCES

- van Schuijlenburg R, Naar CM, van der Wees S, Chevalley-Maurel SC, Duszenko N, de Bes-Roeleveld HM, Iliopoulou E, Houlder EL, Geurten FJA, Baalbergen E, Roestenberg M, Franke-Fayard B. Early Activation of Lung CD8(+) T Cells After Immunization with Live Plasmodium berghei Malaria Sporozoites. *Pathog Immun*. 2025;10(2):46-68. doi: 10.20411/pai.v10i2.794. PubMed PMID: 40062354; PMCID: PMC11888604.
- 2. Metkar SS, Menaa C, Pardo J, Wang B, Wallich R, Freudenberg M, Kim S, Raja SM, Shi L, Simon MM, Froelich CJ. Human and mouse granzyme A induce a proinflammatory cytokine response. *Immunity*. 2008;29(5):720-33. doi: 10.1016/j.immuni.2008.08.014. PubMed PMID: 18951048.

- 3. Fernandez-Ruiz D, Ng WY, Holz LE, Ma JZ, Zaid A, Wong YC, Lau LS, Mollard V, Cozijnsen A, Collins N, Li J, Davey GM, Kato Y, Devi S, Skandari R, Pauley M, Manton JH, Godfrey DI, Braun A, Tay SS, Tan PS, Bowen DG, Koch-Nolte F, Rissiek B, Carbone FR, Crabb BS, Lahoud M, Cockburn IA, Mueller SN, Bertolino P, McFadden GI, Caminschi I, Heath WR. Liver-Resident Memory CD8(+) T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection. *Immunity*. 2016;45(4):889-902. doi: 10.1016/j.immuni.2016.08.011. PubMed PMID: 27692609.
- 4. Chakravarty S, Cockburn IA, Kuk S, Overstreet MG, Sacci JB, Zavala F. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. *Nat Med.* 2007;13(9):1035-41. doi: 10.1038/nm1628. PubMed PMID: 17704784.

Footnotes

Submitted June 16, 2025 | Accepted June 23, 2025 | Published June 28, 2025

Copyright

Copyright © 2025 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.