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ABSTRACT

Background: Despite the control of Bordetella pertussis with vaccine introduction, the incidence
of pertussis has increased in the United States and globally. New vaccine strategies are clearly
needed to regain control of this vaccine-preventable infection.

Methods: Experimental pertussis infection of baboons induces an acute respiratory illness with
clinical and laboratory features similar to whooping cough in man. In a previous study, acellular
pertussis-vaccinated (aP) baboons were protected from clinical illness but not from prolonged
airway colonization. In contrast, convalescent baboons are protected from both clinical illness
and colonization. These studies suggest that current aP vaccines may be ineffective at preventing
airway colonization, contributing to resurgence of pertussis.
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Results: In studies conducted at the University of Massachusetts Chan Medical School in Worcester,
Massachusetts, mucosal IgG antibody responses in nasopharyngeal washes are similar in conva-
lescent and vaccinated baboons. However, significantly higher mucosal anti-pertussis immuno-
globulin A (IgA) responses are observed in convalescent animals.

Conclusions: These studies suggest that mucosal IgA responses to some pertussis antigens will
result in bacterial clearance.
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INTRODUCTION

The incidence of infection with Bordetella pertussis, the highly contagious etiologic agent for
whooping cough, fell dramatically upon introduction of a whole-cell pertussis (WP) vaccine

in the mid-20th century. While the wP vaccine nearly eliminated the public heath significance
of whooping cough, injection site reactions, occasionally high fevers, and other more serious
adverse events were seen. In the 1970s, concern over these side effects resulted in a global effort
to develop an acellular pertussis (aP) vaccine that, specifically, lacked active bacterial endotoxin
and pertussis toxin that were believed to be responsible for most of the unacceptable side ef-
fects. Acellular vaccines replaced whole cell vaccine in the US in 1997 based on demonstrations
that they induced anti-pertussis immune responses and, more importantly, vaccine efficacy,
with significant reductions in adverse effects. Unfortunately, the incidence of pertussis in the
US and globally has gradually increased since the late 1990s, along with sporadic epidemics [1].
Accumulating studies have shown that titers wane more rapidly in aP vaccine recipients [2, 3]
suggesting that failure of available vaccines to prevent infection may contribute to the reemer-
gence of pertussis. Identification of pertactin-negative Bordetella in patients suggests that genetic
variation in the organism, probably through selective pressure from vaccination [4-6], might
also impact the resurgence of pertussis; however, that is not necessarily observed in countries
where pertactin-negative Bordetella is circulating [7]. Overall, there is an acute need for a better
understanding of the correlates of protective immunity against B. pertussis, leading to a more
effective pertussis vaccine.

B. pertussis colonizes the murine respiratory tract; however, mice fail to recapitulate clinical
whooping cough as seen in man. Development of a nonhuman primate model of pertussis using
baboons (Papio anubis) has facilitated advances in understanding the pathogenesis and prophy-
laxis of pertussis. In this model, experimental inoculation of baboons with B. pertussis resulted
in a highly reproducible replication of a whooping cough-like illness including fever, leukocy-
tosis, and the characteristic, chronic cough [8]. Using this primate model [9], investigators have
further demonstrated that immunization with aP prevented clinical disease upon challenge

with B. pertussis. However, the respiratory tract of aP-immunized baboons remained colonized
with pertussis organisms for up to 6 weeks after infectious challenge. Moreover, vaccinated but
colonized baboons were able to transmit infection to naive baboons through casual contact. In
contrast, unvaccinated baboons that have recovered from experimental pertussis infection were
protected from both clinical disease and airway colonization when rechallenged. Similarly, in a
mouse model, immunization with the human aP vaccine prevents severe lung infections but does
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not significantly affect nasopharyngeal colonization, as B. pertussis can effectively colonize the
mouse nasopharynx, spread within respiratory organs, evade robust host immunity, and persist
for months [10]. Thus, studies in both a murine and baboon animal model of pertussis infection
confirm that bacteria elimination cannot be induced through currently available aP vaccines. In
the present study, mucosal antibody responses in vaccinated or convalescent baboons were ana-
lyzed. We demonstrate that mucosal IgA antibodies against pertussis antigens are key elements in
the immune response seen in baboons with reduced or no colonization and should be considered
as a goal for next-generation pertussis vaccines.

METHODS

Animal Studies

Nasopharyngeal washes (NPW) were provided by Dr. Tod Merkel and obtained from animals in
the vaccine study described by Warfel et al [9]. Briefly, animals were inoculated intramuscularly
with human doses of acellular vaccine (Daptacel, Sanofi Pasteur Ltd. or Infanrix, GlaxoSmith-
Kline) for the aP arm (equal numbers of animals) and Triple Antigen (Serum Institute of India
Ltd.) for the wP arm at 2, 4, and 6 months of age. The pertussis antigen content of each vaccine is
listed in Table 1. Naive animals were age-matched to vaccinated animals but did not receive vacci-
nation. Convalescent animals were previously infected with B. pertussis but were clear of infection
for at least 1 to 2 months prior to challenge.

NPW were obtained as described previously [8] by flushing the back of the naris with 1 mL phos-

phate-buffered saline. The recovered washes from both nares were pooled and aliquoted. NPW
was plated onto Regan-Lowe plates to determine the number of colony forming units (CFU),

which were reported by Warfel [9]. NPW for antibody measurement were stored at -80 °C until
assessed for reactivity with pertussis antigens by ELISA (see below).

Table 1. Pertussis Vaccines Used in Current Study

DAPTACEL INFANRIX Whole Cell

Diphtheria toxoid 15 Lf 25Lf <25Lf
Tetanus toxoid 5Lf 10 Lf >5Lf

B. pertussis - - 241U
Inactivated Pertussis Toxin 10 ug 25 ug -
Filamentous hemagglutinin 5ug 25 ug -
Pertactin 3ug 8ug -
Fimbriae type 2&3 5ug - -
Aluminum 0.33 mg <0.625 mg <1.25mg

Daptacel is a product of Sanofi Pasteur; Infanrix is a product of GlaxoSmithKline; Whole Cell is a product
of Serum Institute of India.
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Animal studies and procedures were conducted in a facility accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care International and in accordance with
protocols approved by the Center for Biologics Evaluation and Research Animal Care and Use
Committee. Principles outlined in the Guide for the Care and Use of Laboratory Animals by the
Institute for Laboratory Animal Resources, National Research Council were followed.

Measurement of Mucosal Antibody to B. pertussis

For antibody measurement, pertussis antigens were obtained from List Biological Laboratories
and included fimbriae 2/3 (Fim, cat#186), pertactin (PRN, cat#187), pertussis toxin (PT, cat# 80),
and adenylate cyclase toxin (ACT, cat#188). The measurement of baboon serum antibody has
been previously described using some of these same antigens [11]. ELISA plates were coated with
antigen at 0.5 pg/mL of carbonate/bicarbonate buffer pH 9.6 overnight and blocked using Super-
block (ThermoFisher). Serial 2-fold dilutions of NPW were added to wells in duplicate or tripli-
cate and incubated for 30 minutes. After washing, bound antibody was detected using goat an-
ti-monkey IgG-HRP (Biorad, AbD Serotec AA142P) or monoclonal anti-baboon IgA-biotin (NIH
Nonhuman Primate Reagent Resource, 9B9) (1 ug/mL) followed by Streptavidin-HRP. Antibodies
were developed and/or confirmed to be specific for the Ig classes in P. anubis. After washing, TMB
(3,3’5,5 -tetramethylbenzidine, ThermoFisher) substrate was added and plates developed for 15
minutes prior to the addition of stop solution. Endpoint titers were determined as the last dilu-
tion of NPW with a signal greater than 2 times the negative control NPW. All data are reported as
mean + standard error of the mean.

Statistical Analysis

Statistical analyses of ELISA data were performed by ANOVA with post hoc ¢ test using Graph-
Pad Prism. Box plot data includes the medians; box limits indicate the 25th and 75th percentiles
as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and
75th percentiles; outliers are represented by dots; crosses represent sample means; and bars indi-
cate 90% confidence intervals of the means.

RESULTS

ELISA Determination of Baboon IgG and IgA Antibodies to Multiple Pertussis Antigens

As noted in Table 1, several B. pertussis antigens are incorporated into the acellular vaccine. Both
Daptacel and Infranix include inactivated pertussis toxin, filamentous hemagglutinin, and pertac-
tin with the addition of fimbriae types 2 and 3 to Daptacel. While not quantitated, these antigens
and several others are included in the whole cell vaccine (and upon natural infection). We selected
2 targets common to all vaccines and infection (PT and PRN), one that is present in some aP and
in wP and infection (Fim) as well as one target involved in pathogenesis but only expressed in wP
vaccine and natural infection (ACT). Based on published results using these antigens for the se-
rological measurement of pertussis-specific baboon IgG [11], we used similar coating conditions
and anti-Ig reagents confirmed to be specific for baboon Ig classes. Serum from a convalescent
baboon was used to validate the ELISA for detection of baboon IgA (data not shown).
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Antibody Titers to Pertussis Antigens in NPW

NPW samples were collected from all baboons utilized in the published nonhuman primate
vaccine study [9] and included animal groups receiving aP (n=6) or wP (n=5) vaccine, convales-
cent (n=6) or naive (n=5) at the time of challenge. IgG and IgA responses to pertussis antigens
PRN, Fim, PT, and ACT were measured by ELISA using antibodies specific for either baboon
IgG or IgA. The IgG and IgA endpoint titers against the 4 antigens were plotted against the CFU/
mL of NPW. The temporal development of antibody responses (bar graphs) as well as clearance
of infection (line graph) are shown for a representative naive animal in Figure 1 with a heat map
of individual responses in Supplementary Figure 1. Antibody to PT and ACT were measurable in
NPW within 21 days whereas antibody to Fim and PRN were not detected until 31 days. Bacterial
clearance was within 28 days.

At the time of challenge, aP-vaccinated animals had a good IgG response to Fim, PRN, and PT
but no response to ACT, which is not an aP vaccine component.
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Figure 1. Development of anti-pertussis antibody response and bacterial colonization in naive
baboons following challenge. Endpoint titers of IgA (blue bar) and IgG (orange bar) to fimbriae (Fim),
pertactin (PRN), pertussis toxin (PT), and adenylate cyclase toxin (ACT) in the NPW of a representative
naive baboon following challenge with pertussis is plotted against bacterial colonization (log, ).
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Representative animals are shown in Figure 2, with panels A and B representing each of the
commercially available vaccines. A heat map of the responses of all animals is shown in Supple-
mentary Figure 1. There was a trend for more IgA in response to one vaccine compared to the
other, though the number of animals in each arm is too low to draw conclusions with significance
only for PRN and Fim (P<0.02, P<0.03, respectively). As was noted in the original study, bacterial
clearance was significantly delayed in the aP vaccine arm (>30 days). In contrast to aP-vaccinated
animals, there was an accelerated IgA recall response in wP-vaccinated animals (P<0.007), except
for PT (see Figure 3 for representative wP-vaccinated animal). Also, in contrast to aP vaccine
recipients and naive animals, wP-vaccinated animals showed accelerated clearance of bacteria
(P<0.01). At the time of challenge, convalescent animals had a strong antibody response in the
NPW to all antigens (representative in Figure 4). It should be noted that 4 of 6 challenged conva-
lescent animals had no detectable colonization, whereas the other 2 animals (including the repre-
sentative animal in Figure 4) had a very low bacterial load measured. A heat map of the response
of all animals is shown in Supplementary Figure 1.

The Effect of Antibody Response at the Time of Challenge on Bacterial Clearance

When measured at the time of challenge, similar to what has been published for the serum
antibody response [9], all animals developed a mucosal IgG response to all vaccine antigens
(Figure 5A). However, as shown in Figure 5B, only convalescent animals had a robust mucosal
IgA response to pertussis antigens (P values range from <0.001-<0.06), and this correlated with
protection from colonization. Within the vaccine recipients (aP and wP), there was no significant
difference in antibody responses to vaccine antigens except for the lack of fimbrial response in an-
imals receiving the 3-component vaccine. However, wP-vaccinated animals had an IgG response
to ACT, as did convalescent animals, but not aP-vaccinated animals as that is not a component of
the aP vaccine.

Given that both wP-vaccinated animals and convalescent animals reacted with antigens oth-

er than those in the aP vaccine, we compared the response of the wP-vaccinated animals and
convalescent animals at the time of challenge; these results are shown in Figure 6. Convalescent
animals had significantly lower IgG titers to ACT as compared to wP recipients (P<0.04) (Figure
6A). Strikingly, convalescent animals showed significantly higher IgA titers to ACT (P<0.01) and
PT (P<0.001). The seemingly higher IgA titers for convalescent animals to Fim and PRN did not
reach significance when compared to wP-vaccinated animals (Figure 6B). Convalescent animals
with no colonies detected after challenge had higher IgA titers to ACT (P<0.04) and PT (P<0.007)
at the time of challenge than those convalescent animals with bacteria positive NPW. In compari-
son, bacteria persisted for 12 to 21 days for wP-vaccinated (AUC 2.1x10*-1.1x107) animals and 33
to 42 days in aP-vaccinated (AUC 3.9x10°%-2.3x107) animals.
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Figure 2. Development of anti-pertussis antibody response and bacterial colonization in aP-vaccinated
baboons following challenge. Endpoint titers of IgA (blue bar) and IgG (orange bar) to fimbriae (Fim),
pertactin (PRN), pertussis toxin (PT), and adenylate cyclase toxin (ACT) in the NPW of representative aP-
vaccinated baboons (one from each commercial vaccine group labelled as aP Vaccine 1 and aP Vaccine 2)
following challenge with pertussis is plotted against bacterial colonization (log, ).
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Figure 3. Development of anti-pertussis antibody response and bacterial colonization in wP-
vaccinated baboons following challenge. Endpoint titers of IgA (blue bar) and IgG (orange bar) to
fimbriae (Fim), pertactin (PRN), pertussis toxin (PT), and adenylate cyclase toxin (ACT) in the NPW
of a representative wP-vaccinated baboon following challenge with pertussis is plotted against bacterial
colonization (log, ).
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Figure 4. Development of anti-pertussis antibody response and bacterial colonization in convalescent
baboons following challenge. Endpoint titers of IgA (blue bar) and IgG (orange bar) to fimbriae (Fim),
pertactin (PRN), pertussis toxin (PT), and adenylate cyclase toxin (ACT) in the NPW of a representative
convalescent baboon following challenge with pertussis is plotted against bacterial colonization (log, ).
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Figure 5. Antibody response to pertussis antigens in NPW of vaccinated and convalescent animals.
Baboons were vaccinated with either aP or wP (orange bars) as described [9] or recovered from prior
infection (convalescent, blue bars) and NPW collected just prior to challenge with B. pertussis. IgG (A) and
IgA (B) antibody reactivity to pertussis antigens was measured by ELISA. Endpoint titers were determined
and plotted as bar plots. Center lines show the medians; box limits indicate the 25th and 75th percentiles
as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th
percentiles; outliers are represented by dots; crosses represent sample means; bars indicate 90% confidence
intervals of the means. The differences between vaccine and convalescent animals reached significance for
IgA responses to all antigens (Fim, P<0.049; ACT, P<0.001; PT, P<0.0002; PRN, P<0.029).
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Figure 6. Antibody response to pertussis antigens in NPW of wP-vaccinated and convalescent
animals. Baboons were vaccinated with wP (green bars) as described [9] or recovered from prior infection
(convalescent, blue bars), and NPW collected just prior to challenge with B. pertussis. IgG (A) and IgA (B)
antibody reactivity to pertussis antigens was measured by ELISA. Data was collected and reported as in
Figure 1. The differences between wP and convalescent animals reached significance for IgA responses to
ACT (P<0.028) and PT (P<0.003).

DISCUSSION

The whooping cough-like illness seen in baboons following experimental inoculation with B.
pertussis resembles clinical disease in humans with features that include fever, leukocytosis, and
the characteristic, chronic cough [8]. Similar to the protection from disease that is observed in
humans following aP immunization, it has been shown that immunization with aP prevented
clinical disease in vaccinated baboons upon challenge with B. pertussis [9]. However, aP vaccina-
tion results in colonization of the respiratory tract of aP-immunized baboons upon challenge. In
contrast, unvaccinated baboons that recover from experimental pertussis infection are protected
from disease with little to no colonization. We hypothesized that the mucosal antibody response
in animals protected from disease differs from those with bacterial clearance. Analyses of the
mucosal NPW antibody responses in vaccinated or convalescent baboons shown here demon-
strate that mucosal IgA antibodies against pertussis antigens are key elements in the immune
response seen in baboons with minimal bacteria colonization and should be considered as a goal
for next-generation pertussis vaccines.
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Both IgG and IgA are present in mucosal secretions. IgA is usually more effective on a molar basis
at mucosal defense than IgG. The avidity of mucosal IgA, due to multimeric structure, enhances
antibody binding with antigens and increases antibody mediated conformational or structural
changes in the antigen. The diverse, elevated level of glycosylation of IgA antibodies, in com-
parison to IgG, further protects the mucosal surface by non-specific interference with microbial
adherence. It should be noted that IgA in the NPW that were captured by pertussis antigens in the
ELISA were equally detected by both anti-IgA and anti-] chain monoclonal antibodies (data not
shown). This suggests that the dimeric IgA (dIgA) was produced locally, bound to the polymeric
immunoglobulin receptor (pIgR) on the basolateral surface of epithelial cells, and transported
through the cell to the apical or lumen side of the mucosa in the form of secretory IgA (sIgA).

There are limited studies on the human mucosal antibody response to B. pertussis during infec-
tion, convalescence, or in response to vaccination. Serum IgA from convalescent children inhibit-
ed adhesion of B. pertussis to ciliated epithelium; this was lacking in aP-vaccinated children [12].
Targeting B. pertussis to neutrophils using IgA or bispecific antibody enhanced clearance from
the respiratory tract of mice [13]. IgA reactivity with sonicated bacteria was shown to increase

as a function of time in humans infected with B. pertussis [14]. An early effort towards vaccina-
tion was application of a whole cell vaccine by aerosol into the nose of human participants [15].
There were fewer side effects, and IgA anti-pertussis titers were increased in respiratory secretions
without evidence of a serum IgA response in comparison to intramuscular administration of

the vaccine. Studies that are more recent have allowed determination of the effect of vaccine on
not only disease but also colonization. A wP vaccine was engineered for reduced reactogenicity
[16]. ot only was the vaccine less reactogenic, but it also induced antibody and cellular responses
similar to standard wP vaccine. Mucosal administration, rather than systemic, of experimental
vaccines, including outer membrane vesicles [17, 18] and live attenuated B. pertussis (BPZE1) [19]
have been shown to reduce colonization in mice and which may involve mucosal IgA responses
[20]. When evaluated in the baboon model, intranasal administration of the BPZE1 vaccine also
resulted in significant reduction of B. pertussis colonization following challenge [21, 22]. Addition
of novel adjuvants may also augment the ability of vaccines to suppress colonization [23] as well
the use of virus-like particles [24]. Additional adjuvants or vaccines are needed to reprogram the
immunity induced by the aP vaccine [25]. Together, the published results and those in this paper
suggest that mucosal IgA responses are critical for preventing or reducing B. pertussis coloniza-
tion. Conventional vaccines fail to induce mucosal IgA. Further studies on the contribution of
individual pertussis antigens to this process are warranted.

Pertussis toxin is a major virulence factor that is functionally unique to B. pertussis. It is a hexam-
eric A-B toxin consisting of 1 active subunit (S1) and 5 binding subunits (52, S3, two S4, and S5).
These binding subunits facilitate adhesion to extracellular glycoprotein receptors, including TLR4.
Many clinical manifestations of pertussis, including but not limited to leukocytosis, are associated
with the ADP-ribosylation activity of the S1 subunit. Pertussis toxoid (Ptx) is a critical component
of all aP vaccines and has been used as a monocomponent vaccine. Most manufacturers of Ptx
produce the toxoid by inactivation with formaldehyde; however, hydrogen peroxide is also used
for inactivation, and it is less denaturing with enhanced preservation of tertiary and quaternary
epitope structures as compared to formaldehyde [26]. Vaccine efficacy is higher with hydrogen
peroxide-inactivated Ptx as compared to formaldehyde as either an aP component or mono-
component [27-30]. Incorporation of rPT into vaccines with or without other pertussis antigens
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was superior to standard aP vaccines at inducing PT neutralizing antibody responses including
improved persistence (1 year) [31, 32]. Of interest, antibodies to specific potential protective PT
epitopes may be preferentially elicited by natural infection compared to vaccine [33].

In addition to inhibiting immune function, ACT, in combination with PT, has a significant role in
persistent colonization [34, 35]. In fact, it has been shown to contribute to the internalization of
bacteria into nonphagocytic cells [36] by virtue of binding to CD11b/CD18 [37]. High titer anti-
body responses to ACT are found in sera from individuals that have been infected by B. pertussis
or recipients of wP but not in aP recipients, as would be anticipated since ACT is not routinely
found in aP vaccines [38-40]. Serum antibodies with ACT neutralization activity were also seen
after infection of humans and baboons [41]. ACT neutralizing antibodies promote phagocytosis
and confer protection in vivo [42, 43]. It has been shown that the C-terminal RTX domain is im-
munodominant, elicits neutralizing antibody [44, 45], and may enhance vaccine protection [46].
Mapping studies should identify potential protective epitopes [47, 48].

Fimbrial antigens belong to the type I pili family, are expressed on the bacterial surface, contribute
to adhesion of the bacteria to the ciliated epithelium of the respiratory tract, and cooperate with
FHA to suppress inflammation in response to infection [49, 50]. There are 2 serologically distinct
Fim antigens: Fim2 and Fim3. Five component aP vaccines (and wP vaccine), but not 3 compo-
nent aP, include Fim2/Fim3. Antibodies to Fim are elicited by natural infection or immunization
with wP and 5 component aP vaccines. Fim-specific sera antibodies and monoclonal anti-Fim
antibodies have been shown to reduce B. pertussis adherence to epithelia [51, 52]. It has also been
shown that increasing the Fim2/Fim3 content of aP vaccines improves the protective efficacy of
the vaccine [53]. Together, these results suggest that a mucosal antibody response to Fim should
contribute to preventing colonization, and Fim2/Fim3 should be included in vaccines [54].

Evidence has also accumulated supporting a role for specific T cell-mediated responses and
association with disease prevention and bacterial clearance in humans [55] and baboon models
[8]. Response to infection and vaccination with wP vaccine is skewed towards Th1/Th17, while
the response to aP is mostly Th2. This may suggest that a Th2 response may be sufficient for
protection from disease, but a Th1 response is required for bacterial clearance. IL-17-producing
tissue resident memory T cells (T ,,) may play a key role in long-term memory. Protective T,
are induced during natural infection and by immunization with wP vaccine but not aP vaccines
[56], which may explain waning immunity following aP vaccination. These T, have been shown
to persist in adults vaccinated with wP vaccine as children [57]. Of importance here, IL-17-pro-
ducing Th17 cells support class switching to IgA and upregulating the polymeric immunoglobulin
receptor, and elevated levels of IgA have been shown when Th17 are prominent [58]. Mucosal
immunization with test vaccine/antigens and adjuvant induced both Th17 cells and IgA antibody
and protected against nasal colonization in murine models [20]. Discerning the protective anti-
body or antigens in the mucosal immune response to B. pertussis will contribute to more effective
vaccine strategies. However, in addition to identifying antigen targets, more advances in mucosal
adjuvants and strategies are needed [59, 60].
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