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ABSTRACT 
It is widely acknowledged that HIV infection results in disruption of the gut’s mucosal integrity 
partly due a profound loss of gastrointestinal CD4+ T cells that are targets of the virus. In addi-
tion, systemic inflammation and immune activation that drive disease pathogenesis are reduced 
but not normalized by antiretroviral therapy (ART). It has long been postulated that through the 
process of microbial translocation, the gut microbiome acts as a key driver of systemic inflamma-
tion and immune recovery in HIV infection. As such, many studies have aimed at characterizing 
the gut microbiota in order to unravel its influence in people with HIV and have reported an 
association between various bacterial taxa and inflammation. This review assesses both contra-

Review
Published May 24, 2024

https://www.paijournal.com/index.php/paijournal


www.PaiJournal.com

Pathogens and Immunity - Vol 9, No 1 169

dictory and consistent findings among several studies in order to clarify the overall mechanisms 
by which the gut microbiota in adults may influence immune recovery in HIV infection. Inde-
pendently of the gut microbiome, observations made from analysis of microbial products in the 
blood provide direct insight into how the translocated microbiome may drive immune recovery. 
To help better understand strengths and limitations of the findings reported, this review also 
highlights the numerous factors that can influence microbiome studies, be they experimental 
methodologies, and host-intrinsic or host-extrinsic factors. Altogether, a fuller understanding 
of the interplay between the gut microbiome and immunity in HIV infection may contribute to 
preventive and therapeutic approaches.

KEYWORDS 
HIV; Microbial translocation; Gut microbiome; Translocated microbiome; Inflammation;  
Immune recovery 

INTRODUCTION
The human microbiota represents the collection of microbes existing in and on the human body. 
These microbes are of diverse nature and include bacteria, viruses, and eukaryotes belonging 
to taxa such as Fungi or Apicomplexa. While some of these micro-organisms are known to be 
pathogenic and associated with a variety of infectious and sometimes life-threatening diseases, 
it is increasingly recognized that non-pathogenic organisms may have a profound influence on 
immunity in humans. Recent estimates have determined that humans harbor 1.3 times more 
bacterial cells than human cells [1] although such an estimate still does not consider non-bacteri-
al micro-organisms. The more commonly used term microbiome encompasses the microbiota as 
well as the habitat it colonizes [2]. In that sense, it is well recognized that the human microbiome 
varies depending on the anatomical site in the human body [3]. The human gut contains about 
1000 bacterial species that altogether account for at least 2 million genes which greatly outnum-
bers the 20,000 human genes [4]. With these characteristics, the gut undisputedly accounts for the 
largest microbiota of the human body and thus the largest share of non-human matter to which 
the host immune system may be exposed. Generally, the precise composition of microbial species 
at a given body site as well as optimally functioning mucosal immune cells may determine shifts 
between health and disease states. In the field of HIV research, there is a high interest in under-
standing the role that distinct microbiomes play in disease pathogenesis. Given the common 
transmission route of HIV through sexual intercourse, studies on genital tract microbiomes are 
of high interest, as reviewed previously [5, 6]. In this review, we will focus on the gut microbiome 
and address our current knowledge of how the human gut microbiome changes during the course 
of HIV infection, as well as how these changes in turn influence HIV pathogenesis in treated or 
untreated settings.

Methods to Measure the Gut Microbiome
To begin, it is important to highlight the various methods used to measure the gut microbiome 
as each method has strengths and weaknesses that may limit the degree of interpretation in-
ferred from study findings. So far, some of the methods most commonly used to assess the gut 
microbiome rely on the detection of microbial nucleic acids. Targeted measurement of microbial 
nucleic acids entails expansion of defined genomic regions prior to sequencing and annotation of 
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the retrieved sequences to distinguish between microbial taxonomic groups. The most common 
approach for targeted sequencing-based analysis of the microbiota relies on the prokaryotic 16S 
ribosomal RNA genes (16S rRNA) that span approximately 1500bp and hold conserved regions 
interspaced between 9 variable regions labeled V1 to V9 [7]. 

Contrary to prior assumptions that targeting variable regions of the 16S rRNA gene may be suffi-
cient to identify taxa at the genus level or above, recent studies have shown that PCR-based tech-
niques using universal bacterial primers to amplify distinct variable regions of the 16S rRNA gene 
may have biases for certain bacterial groups, leading to an overrepresentation of these bacterial 
groups, or can dramatically affect the numbers of taxa found [8]. Full-length sequencing would 
resolve the bias of targeting 16S rRNA gene subregions but would also require sequencing of long 
fragments. This is not widely used due its technical challenges and, until recently, incompatibility 
with high throughput methodologies. Sequence agnostic measurement of microbial nucleic acids 
covering all nucleic acids regardless of source or genomic location are commonly performed by 
shotgun metagenomic sequencing that has been shown to provide a broader assessment of micro-
bial diversity as well as the number of species detected, particularly when longer sequencing reads 
are obtained [9]. That said, it is also important to consider that among the wide array of bioin-
formatics tools used for metagenomic analysis of the microbiota, some have been shown to have 
relatively high false discovery rates [10]. 

Aside from measurement of microbial nucleic acids, assessment of microbial products, typically 
metabolites, is also used for analysis of the microbiome. Humans rely on intestinal microbiota 
to metabolize complex dietary carbohydrates. During this process, degradation of dietary fibers 
results in the production of organic acids, gases, and short-chain fatty acids (SFCAs) [11]. SF-
CAs increase the secretion of antimicrobial peptides by epithelial cells, and though it is unclear if 
changes in SFCA levels in human diseases are a cause or consequence of the pathology, a reduced 
abundance of SFCA-producing bacteria has been shown in disease settings such as inflammatory 
bowel diseases [12, 13]. Mechanisms by which SCFAs modulate innate and adaptive immunity in 
viral diseases and in particular in HIV infection were recently reviewed [14]. Gas chromatogra-
phy and mass spectrometry are commonly used to measure gut SCFAs and other small molecules 
[15], from which the gut microbial composition can be estimated.

Immunological Markers Associated with Changes in the Gut Microbiome
Disruption of the integrity and the function of the intestinal barrier can lead to the unchecked 
influx of bacterial components into the circulation, thereby leading to systemic inflammation. As 
such, several markers measured in the blood can be indicative of functional alterations in the gut 
microbiome and the resulting microbial translocation.

Lipopolysaccharide (LPS), a component of the gram-negative bacterial outer membrane, can alter 
homeostasis in the gut by promoting local inflammation and disrupting tight junctions [16], all 
of which can lead to systemic inflammation. This systemic inflammation is a result of the recog-
nition of bacterial components by immune cells such as monocytes that express CD14, a glyco-
sylphosphatidylinositol-linked receptor for various microbial moieties including, among others, 
LPS [17], lipoteichoic acid (LTA [18]), and peptidoglycan (PGN [19]). Because gram-negative gut 
bacteria have LPS in their cell membrane whereas PGN and LTA are major cell wall components 
of gram-positive bacteria [20], increased blood levels of LPS indicate translocation of distinct gut 

https://www.paijournal.com/index.php/paijournal


www.PaiJournal.com

Pathogens and Immunity - Vol 9, No 1 171

bacteria. Nonetheless, these various bacterial products reaching systemic sites can all trigger im-
mune responses, albeit via independent pathways [21], through their interaction with CD14. As 
a result of the interaction between monocytes and LPS or LTA, soluble CD14 (sCD14) is shed by 
activated monocytes [22]; in addition, plasma levels of sCD14 have been shown to independently 
predict mortality in HIV infection [23]. LPS-binding proteins are secreted by enterocytes in re-
sponse to inflammatory stimuli and bind to LPS to trigger independent pathways that lead to the 
clearance of LPS [24]. Endotoxin-core antibodies (EndoCAbs) are IgM or IgG antibodies against 
the endotoxin core of LPS which can bind and neutralize circulating LPS. 

In comparison to healthy persons, patients with sepsis were found to have lower blood levels of 
IgM and IgG EndoCAbs [25]. Thus, lower EndoCAbs may indicate higher LPS exposure. Aside 
from markers related to LPS, microbial translocation can also be identified by measurement of 
markers of gut barrier integrity. In a healthy setting, gut epithelial cells are held together by tight 
junctions that support the transport of water and electrolytes across the intestinal epithelium. The 
tight junction-associated protein zonulin is a regulator of epithelial and endothelial barrier func-
tion. Although upregulated expression and higher circulating levels of zonulin have been shown 
to associate with increased permeability of the gut epithelium in disease settings [26], recent stud-
ies refuting the specificity of commercially available assays for the measurement of zonulin due to 
cross-reactivity with other proteins [27, 28] warrant a cautious interpretation of data that suggests 
a link between gut epithelial damage and zonulin. 

Finally, intestinal fatty-acid binding protein (I-FABP) is considered a marker of intestinal barrier 
dysfunction as it is normally present in epithelial cells of the small intestine but is released into 
the circulation upon damage of the gut mucosa [29]. While it is widely acknowledged that the 
gut shows increased permeability during HIV infection [30], whether ART can revert this dam-
age and to what extent remains unclear. In fact, circulating levels of IFABP increase during early 
[31, 32] and long-term ART [33] though plasma sCD14 levels remain stable or diminish [32, 
33]. This confirms that other factors aside from microbial translocation drive inflammation and 
immune activation in HIV infection. In addition, these observations suggest that understanding 
the relationship between IFABP levels and gut permeability may require consideration of addi-
tional mechanisms other than epithelial damage. For instance, a recent study suggests that next to 
indicating enterocyte damage, IFABP may also indicate gut maturation [34]. 

The Gut Microbiota in HIV Infection
Given the paucity of data on non-bacterial communities of the gut microbiota during HIV in-
fection, the upcoming sections of this review will cover gut bacteria. The bacterial fraction of the 
human gut microbiota is predominantly composed of 5 phyla: Firmicutes make up 60% to 80% of 
bacterial taxa followed by Bacteroidetes that account for 20% to 40%. Although at low prevalence, 
the phyla Verrucomicrobia, Actinobacteria, and to a lesser extent, Proteobacteria are among the 
top 5 bacterial phyla in the gut microbiota [35]. Studies on the gut microbiota in HIV infection 
have for the most part performed 16S rRNA V3-V4 gene sequencing of stool samples or rectal 
swabs, and aimed to clarify whether HIV infection influences microbial diversity—specifically, 
alpha and beta diversity. Alpha diversity is a measure of the diversity within a sample as defined 
by richness or evenness, whereas beta diversity determines the variability in the taxa composition 
among samples within a habitat. An overview of several studies on the gut microbiota during HIV 
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infection [36–53] is presented in Table 1. While various studies have reported a lower alpha diver-
sity in HIV infection, others have reported no effect, irrespective of ART status. Clearly, a global 
comparison is not enough to decipher the potential effect of HIV on the composition of the gut 
microbiota. Comparison of taxa distribution at the phylum level has indicated a higher abun-
dance of Proteobacteria in infected persons irrespective of ART status [36, 37, 42], whereas others 
have reported a high ratio of Prevotella to Bacteroides, 2 genera of the phylum of Bacteroidetes 
[43, 47]. However, both the microbial diversity and phylum distribution have so far not been able 
to consistently explain the changes in plasma levels of immune makers linked to alterations in the 
gut microbiota. In addition, the absence of a consistent effect on either the microbial diversity or 
the phyla distribution, even when accounting for ART, indicates that comparison at lower taxo-
nomic levels may be needed to understand how HIV infection changes the gut microbiome.

Genus-level Alterations of the Gut Microbiome in HIV Infection
The various studies presented in Table 1 have all reported the enrichment or depletion of distinct 
bacterial genera in HIV infection, regardless of whether the overall diversity was affected. These 
studies also demonstrate that different genera from the same phylum can be enriched in either 
HIV-infected or healthy control groups, supporting the need of analysis at low taxonomic level. 
Several studies cited in Table 1 have reported associations between certain bacterial genera and 
clinical and immunological outcome measures, thereby indicating a contribution of such genera 
to the mechanisms by which the gut microbiome influences the course of HIV infection. For 
example, the genus Faecalibacterium (Firmicutes phylum), was reported to be depleted in treated 
HIV infection compared to healthy persons and inversely correlated with plasma sCD14 [38, 42, 
50] and IFABP [47]. 

In contrast, the family of Enterobacteriaceae (Proteobacteria phylum) enriched in treated HIV 
infection, was shown to positively correlate with plasma levels of sCD14 [37]. While such obser-
vations may indicate that defined bacterial genera of the gut microbiome play distinct roles in the 
modulation of immunity, the fact remains that even at the genus-level, reported findings are often 
inconsistent. For instance, in contrast to the prior studies, Monaco et al reported a positive asso-
ciation between the abundance of Faecalibacterium and plasma sCD14 levels [41], but the com-
bination of treated and untreated infection in the analysis could have influenced this association. 
Importantly, different studies tended to highlight different sets of genera. Given the functional 
overlap that can be expected between closely related species, it is possible that distinct functional 
groups of bacteria, rather than unique genera, may explain the dynamics of the gut microbiome 
in HIV infection despite variation in species composition. 

Based on the studies presented in Table 1, we have compiled a list of genera significantly discrim-
inating between HIV and control groups, with most of these studies reporting genera enriched or 
depleted in ART-treated HIV infection. Figure 1 presents a grouping of these genera as a phy-
logenetic tree and provides an overview of clusters that may be generally enriched or depleted 
in ART-treated HIV infection. Among Firmicutes, the genera of the family of Lachnospiraceae 
(class of clostridia) tend to be depleted. Interestingly, the Lachnospiraceae family, known to be 
rich in SFCA producers [54], include species such as the probiotic Clostridium butyricum that 
promote an anti-inflammatory milieu through TGF-β signaling in dendritic cells, which prevents 
an increase in Enterobacteriaceae [55]. Moreover, Lachnospiraceae have been shown to degrade 
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lyso-glycerophospholipids that inhibit CD8 T- cell activity, resulting in the maintenance of CD8 
T-cell responses in the colon [56]. Another family among Firmicutes, namely the Ruminococca-
ceae, are also SFCA producers and include Faecalibacterium, an important butyrate producer in 
the human gut that has anti-inflammatory effects and induces the novel immunoregulatory T-cell 
subset CD4+CD8a+ [57]. Of note, butyrate was shown to reduce epithelial permeability by the 
regulation of tight junction proteins [58]. Another cluster of bacteria depleted in treated HIV-in-
fection belong to the Eggerthellaceae family, currently considered candidates for next-generation 
probiotics, and have been found to have anti-inflammatory and antioxidative properties lead-
ing to upregulation of tight junction proteins [59]. Thus, the specific reduction in abundance of 
Lachnospiraceae, Faecalibacterium, and Eggerthellaceae in HIV infection may contribute to poor 
control of pro-inflammatory bacteria at the gut mucosal interface. In contrast to bacterial taxa 
that tend to be depleted in treated HIV-infection, Figure 1 also shows an enrichment in Entero-
bacteriaceae (Gammaproteobacteria) as well as the Firmicutes, Negativicutes, and the Peptoniphi-
laceae genera Peptoniphilus, Anaeorococcus, and Finegoldia. 

Of note, a recent study reporting a significant enrichment of the genera Peptoniphilus, Anaeoro-
coccus, and Finegoldia during community-acquired pneumonia has highlighted an association 
between these genera and high serum levels of C-reactive protein (CRP) and IL-6 [60]. With 
respect to Gammaproteobacteria that are typically associated with intestinal inflammation, it has 
been proposed that increased oxygen availability offers a selective advantage to facultative anaero-
bic bacteria such as Enterobacteriaceae, thereby driving their expansion in the gut [61]. However, 
increased oxygenation is likely only a partial explanation for the enrichment of these Proteobacte-
ria taxa. For one, Gammaproteobacteria exclusively carry the gene encoding for the hexa-acetylat-
ed form of LPS that is the most potent TLR-4 agonist by 2 orders of magnitude [62]. In addition, 
Negativicutes, that are enriched in treated HIV-infection (Figure 1), are unique among Firmicutes 
in that they possess an outer membrane containing LPS [63], and were reported to have a large 
number of genes involved in cell envelope biogenesis that are similar to those of Gammapro-
teobacteria from which they were likely laterally acquired [64]. This raises the question whether 
Negativicutes may, similarly to Gammaproteobacteria, possess a distinct LPS triggering high 
pro-inflammatory responses. Altogether, these observations suggest a common enrichment of gut 
bacterial genera with strong pro-inflammatory capability along with the loss of anti-inflammatory 
genera in ART-treated HIV infection. Similar to ART-treated HIV infection, Gammaproteobac-
teria and Negativicutes tend to be enriched in untreated HIV infection, whereas several genera of 
the Lachnospiraceae family are depleted (Figure 2).

Changes in the Gut Microbiome During HIV Infection: Cause, Consequence, or Coincidence?
As described above, several studies have reported that the gut microbiota of persons living with 
HIV is different from that of heathy controls. However, it is important to note that whether HIV 
infection directly induces dysbiosis of the human gut microbiome remains controversial. It is ev-
ident that the composition of the human microbiota varies tremendously from person to person 
and that dysbiosis of the gut microbiome can be induced by multiple factors such as the use of 
antibiotics. Importantly, current prophylactic guidelines of HIV treatment recommend admin-
istration of the antibiotics trimethoprim-sulfamethoxazole, azithromycin, or clarithromycin to 
persons with a CD4 T-cell count below 200/mL or 50/mL respectively [65]. Antibiotic use is often 
controlled for in studies on the gut microbiota in HIV infection by excluding persons who had re-
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ceived antibiotics in the 1 to 3 months prior to the study. However, it has been shown that several 
commonly used antibiotics including Azithromycin allow for selection of resistant taxa, altering 
the gut microbiota that is still not fully restored after 6 months [66]. As such, whether dysbiosis 
is caused by HIV infection or simply reflects a change in microbial composition that coincides 
with HIV infection but is caused by other factors remains complicated to assess in cross-sectional 
studies. An overwhelming majority of longitudinal studies on infection with the simian-immuno-
deficiency virus (SIV) in non-human primates (reviewed by [67]) have demonstrated that acute 
or chronic SIV infection did not significantly change the intestinal bacterial composition. While 
it may be argued that the SIV model may not fully recapitulate HIV-induced changes in humans, 
one must acknowledge that a direct effect of HIV infection on the composition of the gut micro-
biome irrespective of lifestyle or antibiotic use has yet to be formally proven.

Focus on the Translocated Microbiome
Notwithstanding the origin of the changes observed in gut microbiome during HIV infection, 
the idea that the gut microbiota could drive systemic inflammation due to the distinct species 
that are able to activate innate and adaptive immune cells has been supported by in vitro studies 
[40, 68, 69]. However, whether the systemic inflammation is a cause or consequence of alteration 
in the gut microbiome as well as underlying mechanisms was long unclear. Recently, we set out 
to clarify the relationship between the translocated microbiome and systemic inflammation in 
treated HIV infection. During the first 2 years after ART initiation, we observed fluctuations in 
plasma concentrations of a cluster of cytokines—namely IL-6, IL-1 β, IL-8, MIP-1 β— known to 
trigger pro-inflammatory pathways and identified these as major mediators of inflammation in 
our Ugandan cohort [70]. Analysis of plasma microbial fragments by shotgun metagenomic se-
quencing demonstrated a predominance of Proteobacteria that is in stark contrast with their low 
prevalence in the gut microbiota and is particularly interesting in the light of non-human primate 
studies showing a disproportionate translocation of Proteobacteria [71, 72]. Specifically, we found 
that the Enterobacteriaceae Serratia were enriched in the plasma and that the ratio of Serratia to 
other bacteria positively correlated with plasma levels of IL-6, IL-1 β, IL-8, and MIP-1 β [70]. 

In contrast, the abundance of various genera of the phyla Actinobacteria, Proteobacteria, and 
Firmicutes, among which Corynebacterium, Pseudomonas, Lactobacillus, and Lachnospiraceae, 
inversely correlated with the plasma concentrations of these cytokines. Transcriptome analysis 
of sorted peripheral blood monocytes, dendritic cells (DCs), and T cells revealed gene signatures 
such as increased type I/II IFN responses, TNF signaling via NF-kB, and IL-6 signaling at time-
points of peak inflammation and high Serratia ratio. Concomitantly, lower expression of genes 
driving Th1 and Th2 differentiation aligned with low plasma concentrations of Th1/Th2 cytokines 
that were associated with a low Serratia ratio. In vitro culture experiments with various species 
belonging to genera of the translocated microbiota confirmed an innate cytokine profile after 
stimulation with Serratia that was consistent with the ex vivo measured pro-inflammatory profile. 

Importantly, changes in the diversity of the translocated microbiota driven by the Serratia ratio 
were associated with CD4 T-cell recovery. This important link between the translocated microbi-
ome and clinical outcome was also confirmed in 3 independent cohorts in our study. In a sepa-
rate study comparing blood bacterial profiles of HIV-uninfected persons to that of HIV-infected 
persons before and 48 weeks after ART, Serrano-villar et al observed that the number of species 
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was increased before and after ART, whereas the Shannon diversity was only increased before 
ART [73]. Fitting our observation of high Proteobacteria abundance in the plasma of HIV-in-
fected Ugandans [70], Serrano-villar et al found that the translocated microbiota of HIV-infect-
ed and HIV-uninfected persons as assessed by 16S rRNA gene sequencing was dominated by 
Gammaproteobacteria and particularly Enterobacteriaceae families [73]. While these taxa were 
absent in several participants 48 weeks after ART, the baseline and fold changes in Actinobacte-
ria, the Lactobacillales order (Firmicutes), the Corynebacteriaceae (Actinobacteria) family, and 
the Moraxellaceae family (Proteobacteria) were significantly inversely correlated with various 
measures of inflammation and immune activation. In a separate study, Merlini et al compared the 
translocated microbiota of HIV-uninfected persons to that of HIV-infected persons before and 12 
months after ART and found that the composition of the translocated microbiota as determined 
by 16S rRNA gene sequencing was not substantially changed by ART and that Enterobacteriales 
were the most detectable across individuals [74]. Comparison between immune responders and 
non-immune responders revealed a higher baseline prevalence of Lactobacillus and Pseudomonas 
in immune responders, suggesting a link between translocated bacteria and immune recovery 
under ART. Altogether, the aforementioned studies on the translocated microbiome in HIV infec-
tion reveal an enrichment of various Gammaproteobacteria, specifically Enterobacteriales before 
ART and a beneficial effect of among others Lactobacillales but not Enterobacteriales on immune 
recovery. As stated above, the potency of LPS derived from Gammaproteobacteria to activate 
innate immune cells may at least in part explain the deleterious effect of Gammaproteobacteria 
among the translocated microbiota in HIV infection. Whether taxa such as Lactobacillus also act 
through specific molecules they produce remain to be clarified. 

Most recently, shotgun metagenomic sequencing of the translocated microbiota of HIV-uninfect-
ed or HIV-infected persons at various stages of disease did not observe a predominance of Gam-
maproteobacteria in the blood but rather the Bacteroidetes Porphyromonas gingivalis followed by 
the Betaproteobacteria Burkholderia multivorans [75]. This further emphasizes the pressing need 
for analytical approaches that may help navigate through inter-person and inter-study differences 
and reveal the overarching principles of how the gut and the translocated microbiome influence 
immunity in HIV infection. Another equally important point is the ability to filter out potential 
technical bias due to laboratory contaminants, that may especially affect samples with low mi-
crobial biomass such as blood samples [76]. Importantly, Guo et al also observed an association 
between bacterial taxa in the blood and inflammation-related proteins in the plasma [75]. 

Unravelling the Functional Microbiome
Findings from studies on the gut microbiome in HIV infection can be integrated into a more 
simplified concept that a loss of anti-inflammatory bacteria and an expansion of those with 
pro-inflammatory properties together could contribute to systemic inflammation in HIV in-
fection. While this establishes a clear relationship between the gut microbiome and immune 
recovery in HIV infection, it is far from presenting the complete picture. Several studies cited 
in Table 1 have reported an association between markers of inflammation and the abundance of 
bacterial genera that are not significantly different between HIV groups and healthy controls [36, 
37, 39, 47, 53]. Thus, aside from their overall abundance as assessed by the quantification of their 
genomic material, other characteristics of gut microbes are likely to determine their effect on 
immunity. Metaproteomics (extensively reviewed by [15]) provides a complementary view of the 
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microbiome which entails liquid chromatography-mass spectrometry analysis of peptide mix-
tures derived from protein extracts. Mapping of the resulting spectra to defined databases allows 
quantitative identification of protein identities. Such an approach allows functional analysis of the 
microbiome, where protein orthologs can be clustered irrespective of which microbes they are 
derived from. 

In addition, the construction of protein-protein interaction networks and the analysis of meta-
bolic pathways using databases such as KEGG pathways cumulatively allow the establishment of 
functional profiles of the microbiome. Li and colleagues have defined functional redundancy as 
“the ability of multiple taxonomically distinct organisms to contribute in similar ways to an eco-
system through having redundant functional traits” [77]. A convincing argument for functional 
redundancy is the observation from the Human Microbiome Project that despite tremendous 
variation in the microbial composition, functional profiles among the body sites remain stable 
[3]. Therefore, functional analysis of the gut microbiome represents not simply a minor addition 
but rather a necessary step to breakdown its complexity into findings that are consistent and bio-
logically meaningful. Evidently, combining metagenomics (ie, what are the genes detected?), me-
tatranscriptomics (ie, how is the expression regulated?), metaproteomics (what are the functions 
of the resulting proteins?) and metabolomics (what microbial small molecules are acting agents of 
the effect of the microbiome on immunity?) may be a powerful approach to obtain a high-resolu-
tion view into the effect of the gut microbiome on human diseases.

Factors Influencing the Gut Microbiome
It is important to acknowledge the various factors that influence and shape the gut microbiome, 
as these may provide contextual nuances that should be taken into consideration for translational 
approaches such as development of preventive or therapeutic strategies. Studies on the gut micro-
biome in HIV infection have shown that the overall diversity [44, 52] and abundance of defined 
taxa [36, 41, 46, 51] are associated with CD4 T-cell counts. In fact, Monaco et al concluded that 
the CD4 T-cell count is the most influential factor contributing to bacterial community structure, 
where a CD4 T-cell count under 200/mL was associated with an enrichment of Enterobacteriace-
ae, Ruminococcaceae, and Clostridiaceae [41]. Moreover, studies addressing the impact of sexual 
practices have reported that the gut microbiome of men who have sex with men (MSM) is differ-
ent than that of non MSM-male or female; and MSM exhibited a unique microbial profile regard-
less of HIV or ART status [52, 78]. 

Irrespective of sexual practices, the nadir CD4 T-cell count was again shown to be the strongest 
predictor of microbial dysbiosis in the gut, with a notable increase in dysbiosis index once the 
CD4 T-cell count dropped below 200/mL [52]. With current therapy guidelines that aim to treat as 
soon as a diagnosis is made, many individuals may have initiated cART well before reaching low 
CD4 T-cell counts. Nonetheless, it is important to point out that many studies have assessed the 
gut microbiome in persons with CD4 T-cell counts well above 200/mL (Table 1) and still reported 
changes in the composition of the gut microbiome. Aside from antibiotic use and sexual practices, 
accumulating evidence has established that the gut microbiome is influenced by a plethora of fac-
tors including age [79], diet [80], sex hormones [81], lifestyle [4], ethnicity [82], geography [83], 
and host polymorphism [84]. Perhaps the most challenging aspect of microbiome research in 
the context of HIV infection resides in the ability to establish how the microbiota influences HIV 
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pathogenesis and immunity independently of these other factors. This conundrum is certainly not 
limited to the field of HIV and extends to many other areas of research such as numerous infec-
tious diseases [85], vaccinology [86], and cancer [87] that have determined an involvement of the 
human microbiome in respective settings. A recent metanalysis of the gut microbiome in cancer 
and autoimmune disease which included 37 autoimmunity and 45 cancer studies, compiling 4208 
healthy human controls and 5957 disease cases from 27 countries, was able to identify 214 dis-
tinct genus-level associations with either disease, but 131 of these genera were only reported in a 
single study [88]. The overall lack of consistency between studies as well as microbiome features 
that showed opposite associations between the diseases underlines the limitation of analysis at 
taxonomic levels in understanding the role of the microbiome in human disease. Despite these 
challenges, key mechanisms of how the gut and tumor microbiomes influence human cancer 
through, among others, TLR-mediated cytokine signaling have inspired numerous approaches 
such as the administration of microbial metabolites or synthetically engineered bacteria to modu-
late the gut microbiome in cancer [89].

CONCLUSION
Studies on the gut and translocated microbiomes in HIV infection suggest that translocated mi-
crobial constituents influence the systemic inflammation that is characteristic of the disease. As 
challenging as microbiome research may be, an important consideration for future avenues would 
be to employ analytical tools that decipher the functional microbiome and facilitate translation to 
evidence-based interventions. Thus far, limited understanding of mechanisms have likely contrib-
uted to the inefficacy of broad and untargeted interventions such as the administration of prebiot-
ics or probiotics [90]. Moving forward, advancement towards successful interventions will likely 
require the use of multi-omic approaches covering the many facets of the interaction between gut 
microbes and immune cells, and it should aim to identify key processes that are not easily dis-
turbed by factors such as diet or sex. Clearly, such complex studies would only be feasible in small 
proof-of-concept clinical trials but will be instrumental for both selection of the most promising 
intervention and the identification of key clinical outcome measures to include in larger clinical 
trials. The currently observed associations between translocated microbiota and immune recov-
ery support the idea that microbiome-based strategies may contribute to the clinical management 
of HIV infection.
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Figure 1. Phylogenetic tree based on the NCBI taxonomy of genera significantly enriched (red) 
or depleted (blue) in ART-treated HIV infection as reported by [37, 39, 42, 45, 47, 48, 50, 52, 53]. 
Genera marked in bold were reported in 2 or more studies. Genera without color shade were reported as 
significantly different, but the relationships varied depending on the study. Tree generated with PhyloT v2.
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Figure 2. Phylogenetic tree based on the NCBI taxonomy of genera significantly enriched (red) or 
depleted (blue) in untreated HIV infection as reported by [36, 40, 44, 50]. Genera marked in bold were 
reported in 2 or more studies. Genera without color shade were reported as significantly different, but the 
relationships varied depending on the study. Tree generated with PhyloT v2.
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Table 1. Comparative Overview of Studies on the Gut Microbiota in HIV Infection
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Abbreviations: ART: ART-treated HIV infection; HU: HIV uninfected; INR: immune non-responders; IR: 
immune responders; LTNP : HIV-infected long-term non-progressor; MSM: Men who have sex with men; 
NA : not applicable; ND: not described; R-ART: HIV infection with recent ART initiation; VU: viremic 
untreated, VU-R: viremic untreated with recent HIV infection. 
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