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ABSTRACT
Biological sex is a determinant of both susceptibility to and pathogenesis of multiple infections, 
including HIV. These differences have effects on the spectrum of HIV disease from acquisition to 
eradication, with diverse mechanisms including distinct chromosomal complements, variation in 
microbiota composition, hormonal effects on transcriptional profiles, and expression of different 
immunoregulatory elements. With a comparative biology approach, these sex differences can be 
used to highlight protective and detrimental immune activation pathways, to identify strategies 
for effective prevention, treatment, and curative interventions. 

KEYWORDS
HIV; gender; sexually transmitted diseases; immune response

http://www.PaiJournal.com


Pathogens and Immunity - Vol 3, No 1

www.PaiJournal.com

83

INTRODUCTION
Social, behavioral, and biological differences between men and women have a clear influence on 
the natural history of disease and the response to therapeutic interventions. The fact that men and 
women are different is simultaneously treated as manifest and inconsequential in many scientific 
studies; traditionally, medical science has approached sex as a source of variation requiring con-
trolled analysis, but there has been limited investigation into the mechanisms of these differences. 
Within the spectrum of HIV disease, sex differences have a greater significance, and these differ-
ences are critical to understand for the design of clinical interventions and trials. Furthermore, 
the distinctions between men and women offer a unique point of leverage for defining disease 
pathways that can be modulated for the goals of vaccine-induced protection, attenuated patho-
genesis, or cure. This review outlines the data’s delineating sex-based differences in acquisition, 
disease progression, and potential for cure. Potential mechanisms for these differences are high-
lighted, linking HIV to other infections and vaccine responses and emphasizing the areas in need 
of further research. For each of these sections, the known differences are placed in the context of 
their implications for current clinical challenges for HIV prevention, management of the compli-
cations of disease, and efforts at eradication.

ACQUISITION
The emergence of HIV in men who have sex with men (MSM) in the United States [1] is in con-
trast to the modern, mature HIV epidemic where a significant burden of infection worldwide is 
borne by women; 59% of infections in Sub-Saharan Africa and 51% of total infections worldwide 
are in women and girls [2]. Although the epidemic is generalized, important sex distinctions with 
respect to disease acquisition remain. Behavioral and socioeconomic factors drive a substantial 
proportion of the difference in acquisition between men and women. This was highlighted by 
early studies suggesting lower efficacy of pharmacologic pre-exposure prophylaxis in women, a 
difference ultimately attributed to very low adherence in some studies of women [3-5]. However, 
biological determinants of host susceptibility are modulated by sex, substantially contributing to 
risk differentials [6]. Sex-based variation offers critical insights into pathways that may be relevant 
to prevention efforts with either pharmacologic strategies or vaccination. 

Anatomy, microbiome, and sexually transmitted diseases
Male to female sexual transmission is more efficient; penile-vaginal sex carries an approximately 
2-fold higher risk of HIV acquisition for the receptive partner versus the insertive partner in a 
serodiscordant encounter [7]. The portal of entry for sexual transmission is a primary difference, 
with significant differences in epithelial barrier function and immune cell complement between 
the penile and rectal mucosal surfaces and the female genital tract. In the female genital tract 
enhanced susceptibility is associated with local inflammation [8, 9]; data suggest that specific 
patterns of cytokines and chemokines associate with a local influx of cells susceptible to HIV 
infection and with changes in the expression of factors promoting mucosal barrier maintenance 
[10]. This may facilitate transmission of less fit viruses [11] and increase the likelihood of infec-
tion. Sexually transmitted infections (STIs) are one driver of inflammation in the genital tract [12, 
13] and have been linked to enhanced transmission of HIV [14-16] in both men and women. Of 
note, women have an enhanced risk of HIV-infection associated with laboratory diagnosed STIs, 
even in the absence of clinically symptomatic infection[17].

http://www.PaiJournal.com


Pathogens and Immunity - Vol 3, No 1

www.PaiJournal.com

84

Growing evidence suggests that another significant contributor to inflammation in the female 
genital tract is the local microbiome [18-20]. In addition to effects on inflammation and STI coin-
fection, microbiome composition has been linked to alterations in genital tract wound healing 
[21], another pathway of susceptibility. Recent data also directly implicate microbial metabolism 
with altered drug levels and reduced efficacy seen with specific microbiome patterns [22]. Taken 
together, data indicate that the balance of local bacteria, including commensals and pathogens, 
and resulting inflammation and local tissue effects can profoundly impact the risk of HIV acqui-
sition; these factors have clear anatomical differences in men and women with implications for 
prevention strategies. In the specific case of tenofovir, the local metabolism by microbial com-
munities described above will reduce efficacy in women [22], whereas data from studies in men 
suggest that tenofovir gel exposure is associated with downregulation of RNA coding for inflam-
matory regulators in rectal biopsies, potentially increasing protective effects [23].

Sex Hormones
The risk in the female genital tract is then further modulated by the exposure to sex hormones. 
Animal studies have previously identified a link between SIV acquisition and high progesterone 
levels either due to menstrual cycle variation [24-26] or to exogenous administration of proges-
tins, modeling contraceptives [27, 28]. In humans, the data are difficult to parse. Progestin-related 
thinning of vaginal mucosal surfaces in non-human primates (NHPs) is well described, [27-29] 
but the data in women have shown little or no change in vaginal epithelial thickness in associa-
tion with depot medroxyprogesterone (DMPA) use [30-34]. Despite this clear difference from the 
primate model, the preponderance of data does support an increase in HIV acquisition risk in 
association with DMPA use, with meta-analysis estimates of a hazard ratio in the range of 1.4; no 
association with other contraceptives has been consistently observed [35-37]. Recent data from a 
prospective cohort have suggested that there are higher numbers of HIV-susceptible target cells in 
the cervix in the setting of higher progesterone (based on menstrual cycle or DMPA administra-
tion) [38], indicating one potential mechanism for increased acquisition. The effects of hormonal 
contraception also intersect with risks associated with local microbiota as recent data have also 
shown that vaginal inflammatory profiles are modulated by both hormonal contraception and 
local microbiota and concurrent sexually transmitted infections [39].

Sex differences in the immune response
Finally, the efficacy of vaccination to block acquisition may also vary between the sexes. Genetic 
and hormonal factors combine to produce sex-specific variations in the immune responses to 
vaccines as measured by both efficacy and adverse effects [40]. Examples include the increased 
risk of women of childbearing age to the rare complication of fatal visceroptropic disease fol-
lowing receipt of the yellow fever vaccine [41, 42] and the HSV glycoprotein vaccine which had 
protective efficacy in women but not in men [43]. Sex differences in HIV vaccine responses are 
still a subject of exploration. In the only vaccine trial with a protective effect (RV144), the efficacy 
was 25.8% in men (n = 4875) and 38.6% in women (n = 3085) although this difference was not 
statistically significant [44]. Potential mechanisms for differences in vaccine efficacy and safety 
include immune subset variations and differences in pathogen sensing and inflammatory pathway 
activation. A secondary analysis of RV144 reported sex differences in circulating levels of myeloid 
and plasmacytoid dendritic cells (pDCs) and a subset of natural killer (NK) cells although these 
values were not specifically related to protective efficacy [45]. Transcriptional signatures induced 
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by the yellow fever vaccine identified gene programs critical to vaccine-induced protection [46] 
and a sex-stratified analysis of this data identified distinct gene pathways activated in men versus 
women [47]. These variations suggest that adjuvant strategies, antigen dose, or site of delivery 
could all potentially be optimized for more efficacious vaccines. Given the challenges in designing 
an effective vaccine for prevention of HIV, exploiting immunologic differences between men and 
women may illuminate pathways critical to generating protective immunity.

From a genetic perspective, the sex chromosomes carry immunoregulatory genes. The X chro-
mosome carries TLR7 and TLR8 (both encoding pathogen sensors, the former tightly linked to 
type 1 interferon production) and FOXP3 (a transcription factor critical for regulatory T cell 
development) and a high density of regulatory micro RNA sequences [48-50]. Specific Y chromo-
some polymorphisms have also been associated with infection susceptibility suggesting immune 
activity [51, 52]. While there is not a strict gene dosage effect (due to X inactivation), having two 
X chromosomes even in the setting of phenotypic male sex (ie Klinefelter’s syndrome, XXY) has 
immunologic consequences; it is associated with increased prevalence of the female predominant 
autoimmune disease systemic lupus erythematosus (SLE) [53]. Recent work has demonstrated the 
variability of X chromosome inactivation and consequences for disease pathogenesis [54-56]; bi-
allelic expression of TLR7 has recently been demonstrated and linked to the development of auto-
immune disease [57]. Taken together, the evidence suggests the sex chromosome complement has 
important consequences for immune function and may drive different inflammatory pathways.

Superimposed on the genetic differences are the effects of sex hormones, including estrogen, 
progesterone, and androgens, all modulators of immune function. With the caveat that in vitro 
modeling of hormonal milieu is difficult, there is evidence for immune suppressive effects of 
progesterone on multiple cell types and for concentration-dependent proinflammatory effects of 
estrogen on specific cells [51]. Furthermore, estrogen, through upregulation of interferon regu-
latory factor 5 (IRF5) has been reported to enhance type 1 interferon production in response to 
TLR7 stimulation [58]. Importantly, multiple diverse genes have estrogen regulatory elements in 
their promoter regions, suggesting that they may be directly controlled by sex hormone exposure. 
The effects of sex hormones may directly modulate both vaccine efficacy and the natural develop-
ment of immunity in HIV infection.

Implications
Sex differences in acquisition offer insights critical to the development of effective prevention 
efforts. In addition to important behavioral determinants that differ for men and women, sex 
confers distinct biological risks. This includes factors that enhance transmission through changes 
in barrier maintenance, target cell availability, local inflammation, and prophylactic drug concen-
trations as well as variations in vaccine response. There is an urgent need to fully define the role 
of exogenous hormones given to women as contraception; the critical role of effective contracep-
tion is clear, but identifying the methods most compatible with prevention of HIV transmission 
should share priority. Sex differences in vaccine responses should also be clearly defined as they 
may point to optimal adjuvant strategies that will be effective in both sexes. 
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IMMUNE RESPONSE AND PATHOGENESIS
Viral load
Once HIV infection has been established sex differences persist and in some cases amplify. Early 
in the HIV epidemic, work that first demonstrated the link between measures of viral activity and 
disease progression also highlighted a difference in baseline viral loads between men and women 
[59]. Several subsequent studies identified similar differences in HIV viral load [60-65], although 
other studies did not recapitulate this finding [66, 67]. Taken together, the preponderance of the 
data indicates that women have lower levels of HIV RNA, although there is some convergence in 
this measure over time and with disease progression [68, 69]. This subtle difference in viral load 
raised important clinical questions: rates of disease progression did not differ between men and 
women, suggesting that the viral load thresholds did not adequately identify women at risk for 
progressive disease. Antiretroviral therapy guidelines initially incorporated viral load measures, 
leading to significant differences in treatment eligibility between men and women with disease 
progression: in one study 74% of male versus 37% of female progressors were eligible for therapy 
in the first year after seroconversion [64]. Setting aside the clinical questions regarding treatment 
initiation, the viral load gap between men and women also opened significant questions about 
disease pathogenesis and the determinants of an effective immune response.

The viral load of an individual infected with HIV is determined by a combination of the char-
acteristics of the infecting virus itself and the host immune response, with the most extreme 
examples seen in patients who spontaneously suppress or control viremia (reviewed in [70-74]). 
Women are overrepresented in some cohorts of immune controllers of HIV [75, 76] raising ques-
tions about whether sex differences in immune responses track with features linked to sponta-
neous viral suppression. Given the heterogeneous characteristics of HIV controllers, separating 
the sex-based components may amplify subtle differences that confer immunologic advantages. 
A sex-based difference in HIV control is consistent with an extensive body of literature docu-
menting distinctions between the sexes in acquisition and progression of viral infections and in 
the protective efficacy of and adverse responses to vaccinations [51, 52, 77, 78]. However, there is 
little evidence to define a mechanism for the difference in HIV infection. 

From the standpoint of protective genetic factors, it is notable that many genome association 
studies, including the International H.I.V. controllers study [79], analyze only the autosomal 
chromosomes. Given the multiple X-encoded miRNAs and immune regulatory genes, this anal-
ysis may have omitted factors with relevance to viral control. As there is evidence that sex-based 
viral load distinctions are also seen in children prior to puberty [80], the role of chromosomal 
differences merits consideration. Focused exploration of sex-chromosome-linked genetic deter-
minants in HIV control is increasingly feasible as new analytic methods are developed for in-
cluding the X chromosome in genetic association studies [81, 82]. In addition, the role of steroid 
hormones in the direct modulation of HIV transcription will be discussed below.

Overall, HIV viral loads tend to be lower in women during early infection, and there is an enrich-
ment of women among spontaneous and post-treatment controllers. This suggests that either hor-
monal modulation of virus or immune response, or direct sex-linked genetic variation that alters 
the immune response is contributing to virologic control. Isolating sex as a variable may highlight 
the protective pathways. 
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HIV specific T cell responses
There are limited studies comparing HIV-specific immunity in men and women, and many 
cohort studies have limited participation of women [83] leaving many questions about how the 
sex differences in immune response contribute to viral control. One study specifically quantified 
CD8+ T cell responses in both sexes at two time points after seroconversion, demonstrating that 
these responses were correlated with CD4+ T cell counts in women but not in men [84]. Interest-
ingly, the CD8+ T cell responses did not differ in magnitude by sex, leading the authors to suggest 
that the differences observed in viral load between men and women on the population level may 
not be directly linked to cytotoxic T cell function [84]. Despite the lack of augmented T cell re-
sponses in this single study, in non-HIV studies, there was evidence of an amplified T cell activa-
tion and proliferation in mucosal T cells from women [85]. Likewise, gene expression analysis in 
HIV negative populations showed higher induction of inflammatory pathways in cytotoxic T cells 
from women after in vitro re-stimulation; estrogen receptor elements were identified in the pro-
moter regions of many of these differentially expressed genes [86]. Further work is necessary to 
parse whether there are sex differences in T cell responses relevant to control of plasma viral load. 

T cell activation is part of a profile of chronic immune activation associated with HIV viremia 
and disease progression. There is an inverse relationship between survival and T cell activation in 
patients with advanced immunodeficiency [87], and CD8+ T cell activation in early disease is a 
strong predictor of immunologic progression [88]. These findings focused attention on the host 
immune response as a critical determinant of the pathogenesis of AIDS, irrespective of levels of 
plasma viral load. Again, biological sex is an important modifier; women have a higher level of 
CD8+

 T cell activation when controlled for viral load [89] suggesting an inflammatory mechanism 
for the relatively more rapid disease progression seen in women at lower viral loads. The drivers 
of heightened T cell activation are likely to include sex differential innate immune responses in-
cluding production of IFN-α as detailed below.

Innate immune responses
Innate immune cells prime and promote adaptive responses, and they also mediate direct host 
protection through recognition and elimination of infected targets. pDCs are the dominant 
source of type 1 interferon, and pDCs from women produce higher levels of IFN-α when stimu-
lated with HIV-derived Toll-like receptor ligands (TLRs) [89], one potential driver of CD8+ T cell 
activation. As the X chromosome encodes TLRs that directly sense HIV (including TLR7), the sex 
chromosome complement likely contributes to the amplified production of interferon. In addi-
tion, hormones, in particular estrogen, influence pDC IFN-α production in part through direct 
effects on the expression of interferon regulatory factor 5 (IRF5) [58, 90, 91]. Prior work has also 
suggested a role for progesterone in the regulation of pDC function. In vitro studies showed a 
potent inhibitory effect of direct coculture with hormone[92] in contrast to an enhanced IFN-α 
response from pDCs sampled from high progesterone individuals [89]. As these studies highlight, 
hormone exposure needs to be considered as a net effect of multiple inputs, obligating careful 
interpretation of in vivo studies.

Genetic associations and in vitro studies combine to demonstrate a role in HIV pathogenesis for 
another innate antiviral effector, the natural killer (NK) cell (reviewed in [93, 94]). NK cell func-
tion is highly sex-specific with respect to reproduction, where there is clear evidence of evolution-
ary interactions between NK-cell receptors and HLA ligands [95], and associations with preg-
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nancy loss and intrauterine growth restriction (reviewed in [96, 97]). There is less data to define 
the role of sex in modulating the function of NK cells at other sites. Age, sex, and menstrual cycle 
effects on peripheral NK-cell distribution and function have been reported [98, 99], but it is diffi-
cult to interpret the relevance of these variations to disease [100, 101]. More focused research is 
warranted to determine whether sex is associated with relevant differences in NK-cell activity.

Monocytes are another innate cell population critically important to HIV pathogenesis. Monocyte 
activation has been linked to soluble markers of inflammation that are associated with morbidity 
and mortality [102] and have been mechanistically linked to coagulation abnormalities that may 
contribute to cardiovascular events in HIV-infected individuals [103, 104]. Of note, lipid metab-
olism pathways are linked to monocyte and innate cellular activation in the general population 
(reviewed in [105]), and lipids are modulated by sex hormones [106]. Although there are limit-
ed studies in patients with HIV, in uninfected populations, lower percentages of CD14+CD16++ 

monocytes have been reported in healthy women [107], and increased monocyte activation has 
been reported in women with systemic lupus erythematosus [108]. Lipid metabolism is linked to 
innate cellular activation (reviewed in [105]) and the sex hormone effects on lipids [106] are a po-
tential mechanism for differences between men and women. Soluble markers of innate immune 
activation are predictive of HIV disease outcomes in cohort studies, but it is not clear if their per-
formance is accurate in women. The magnitude of changes in biomarkers after initiation of ART 
has been reported to differ between men and women, but these studies are difficult to interpret. In 
many cases, there are different levels of pretreatment elevation, and a smaller net change in wom-
en may lead to comparable plasma levels. In that context it is difficult to determine whether there 
is a relevant sex difference in treatment response [109-111].

Humoral immunity
Sex differences extend to antibody formation, with more robust induction of antibody responses 
to vaccines, higher rates of autoreactive antibodies, and higher baseline levels of some immuno-
globulin subclasses in women (reviewed in [112]). There is evidence for a direct effect of sex hor-
mones, most notably in the proposed role of estrogen in promoting somatic hypermutation and 
decreasing the stringency of selection against autoreactivity [112]. In contrast, testosterone has 
been linked to a profile of lipid metabolism that is associated with lower responses to influenza 
vaccination [113]. Sex differences have been described in many vaccine responses, and the range 
of ages studied (including prepubertal subjects) suggests that sex hormones are not solely re-
sponsible for these differences [40]. In the specific case of HIV, sex differences in the frequency of 
broadly neutralizing antibody responses (bNabs) to HIV have not been apparent [114], although 
neutralizing responses are tied to viral load [115], which does have sex specific determinants, as 
discussed previously. 

While a potent pathway for prevention of new infection, neutralization is not the only protective 
function of antibodies. The modest efficacy seen in the RV144 HIV vaccine trial was associated 
with non-neutralizing antibody titers [116] . In addition, the antibodies generated by RV144 had 
more polyfunctional non-neutralizing Fc effector domains when compared to the non-protec-
tive VAX003 vaccine trial [117]. Antibody subclass and Fc glycosylation patterns are important 
determinants of the non-neutralizing functional profiles of antibodies [118]. Ongoing research 
is exploring the pathways for tuning glycosylation patterns to optimize these antibody functions 
[119]. Of note, glycan modifications are influenced by age and sex, and levels of estrogen have 
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been linked to a predominance of specific glycoforms [120]. A separate link between the sex hor-
mone milieu and antibody glycan modifications is suggested by the pregnancy-associated changes 
in rheumatoid arthritis disease activity and the associated patterns of circulating antibody gly-
cosylation [121, 122]. In the tissues of the female reproductive tract, hormones associate with 
changes in glycosylation machinery [123]. Recent work has directly linked estrogen levels with 
and without pharmacologic modulation to patterns of glycosylation in bulk IgG [124]; further 
work is necessary to assess the effects in antigen-specific antibodies. A more detailed understand-
ing of the role of sex and sex hormones in this process may lead to strategies for natural optimiza-
tion of the antibody glycoprofile in both women and men.

Microbiome
Inflammation and disease pathogenesis in HIV infection have also been linked to microbial 
translocation events [125] prompting efforts to shape the gut-associated microbiome to optimize 
immune parameters [126-128]. Differences in the microbiota of the reproductive tracts with 
consequences for the efficacy of PrEP have been well described, however, there are also sex differ-
ences in the gut microbiota between men and women. Sex hormones favor the predominance of 
specific microbial communities, and in animal studies they have been linked to the sex-specific 
susceptibility to autoimmune diseases [129, 130]. Human studies have confirmed the association 
of sex with specific microbiome characteristics [131-133]. Further studies are needed to define 
the influence of sex on gut microbial communities and the consequences of a particular microbi-
ome composition for microbial translocation and inflammation.

Implications
For both the exceptional case of immune control and the more typical phenotype of disease 
progression, sex differences in HIV infection present several opportunities to further delineate 
the mechanisms of HIV pathogenesis. A heightened inflammatory response may offer a selective 
advantage for establishing a state of viral control, but in the more typical case of disease progres-
sion, this will confer a risk for amplified pathology and disease progression at lower viral loads. 
Furthermore, these differences may contribute to inflammatory comorbidities in HIV including 
cardiovascular disease. Analyses of women with known hormonal status (premenopausal and 
postmenopausal, exposure to exogenous hormones) will help to define the contribution of hor-
mones, a pathway that can be pharmacologically modified. Likewise, differences in the immune 
response to infection may also lead to efforts at successful vaccine design.

HIV CURE
Embedded within the discussion of treated HIV disease is the question of whether sex differences 
will be relevant to strategies for cure. Again, the role of sex is not fully defined, but the biological 
distinctions between men and women may offer points of leverage. A successful intervention will 
either definitively eradicate the latent proviral HIV reservoir (eg, through the “shock and kill” ap-
proach) or will establish a state of durable immune control or transcriptional silencing to prevent 
resurgence of the virus after withdrawal of ART (ie, a “functional cure”) (reviewed in [134-136]). 
While the case of the Berlin patient [137, 138] stands as a point of optimism for the potential to 
achieve a durable cure of HIV, subsequent cases have demonstrated the challenges of achieving 
viral eradication [139-142]. The recently described post-treatment controller (PTC) cohort of 
individuals with durable suppression of viral replication after withdrawal of ART offers a natural 
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model of the goal of functional cure [143]. Of note, as with immune controllers, an association 
between female sex and PTC status has been reported, albeit based on small numbers [144]. The 
field of HIV cure research has advanced rapidly in both the basic discovery phase and through 
clinical trials, but women are underrepresented in these studies [145]. Their limited representa-
tion may lead to missed opportunities to identify sources of biological variability that may have 
relevance. Importantly, many of the curative interventions proposed target the host immune 
system and not the virus; this means that there is a greater chance of sex differences in responses, 
which should be carefully considered while therapies are developed and tested.

To frame the discussion of potential sex differences, we will divide cure research into a few do-
mains. Areas of active investigation include 1) defining the size and location of the reservoir, 2) 
identifying pathways to latency reversal or more permanent silencing of transcription, and 3) 
mobilizing the immune response to clear infected cells. We will focus the discussion on the first 2 
points here, as sex differences in the priming and direction of immune responses via vaccination 
and following infection were discussed previously.

Defining the reservoir
Defining the reservoir will identify the targets and delineate the threshold required to eliminate or 
silence HIV [146]. Several measures have been proposed, each with their caveats. Measurement 
of the proviral DNA reservoir of HIV has been shown to be predictive of the time to rebound 
after interruption of therapy in a clinical trial [147]. The HIV DNA reservoir prior to therapy is 
correlated with plasma viral load and had clinical prognostic value for untreated disease progres-
sion [147, 148]. This DNA reservoir is established early during infection and is relatively stable, 
although it can be significantly reduced by the initiation of ART [149]. The measure also has im-
portant limitations, as ex vivo studies have demonstrated that a significant proportion of provirus-
es measured in HIV DNA assays are defective at the sequence level [150], even when measured 
during acute infection [151], and are not a measure of the replication competent reservoir. Of 
note, viral RNA species from defective sequences [152] may also contribute to immune activa-
tion and pathogenesis, suggesting an importance of the DNA reservoir irrespective of replication 
competence. However, it is a challenge that there is limited correlation between measures of HIV 
DNA, RNA, and outgrowth of viruses in vitro [153], and the factors governing the establishment 
of the DNA reservoir are incompletely defined. Two cross-sectional studies with women partici-
pants have suggested that female sex is associated with a lower HIV DNA reservoir in peripheral 
blood mononuclear cells (PBMCs) [154, 155]. These studies were not specifically designed to test 
sex as a variable, and approximately 30% of the participants were women. In contrast, data from a 
prospectively recruited cohort of matched men and women showed no significant differences in 
HIV DNA reservoir measures in CD4+ T- cells [156].

Residual HIV expression measured by HIV RNA expression offers a different index of virus activ-
ity. Measurements of both cell-associated unspliced (CA-US) and multiply-spliced (CA-MS) RNA 
transcripts have been used in a variety of studies to quantify HIV expression, although the precise 
significance of these types of transcripts is a topic of ongoing discussion (reviewed in [157]). The 
level of CA-RNA was reported to associate with time to rebound in one cohort undergoing an an-
alytic treatment interruption [158], suggesting that this measure may have utility in assessing the 
potential for cure. Women have lower levels of CA-MS RNA transcripts and lower levels of plas-
ma HIV RNA as measured by a single copy assay [156]. These results suggest that in this particu-
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lar cohort in which HIV DNA levels were comparable, there may be important differences in HIV 
RNA production and residual viremia. Measurement of in vitro production of replication-compe-
tent virus, which has been proposed as the measure most tied to risk of rebound viremia, has not 
been systematically compared between men and women.

HIV RNA expression and latency reversal
Sex steroids may contribute to differences in CA-RNA levels through transcriptional control. The 
estrogen receptor associates with the HIV-1 long terminal repeat in combination with other tran-
scription factors, and 17β-estradiol has an inhibitory effect on HIV replication [159, 160]. Anoth-
er study using combinations of estrogen and progesterone suggested that high levels of hormone 
exposure inhibited and lower levels enhanced HIV transcriptional activity [161], although this 
study did not isolate transcriptional effects and bystander cytokine secretion may have also played 
a role. Using a small hairpin RNA knockdown screen, Karn and colleagues identified the estrogen 
receptor as a major regulator of HIV latency reversal in cell line and primary cell models; laten-
cy reversal with a variety of activating stimulants was more efficient when estrogen was blocked 
[162]. This observation was further validated with ex vivo reactivation of primary human sam-
ples. In these studies, exposure to estrogen blunted the induction of HIV RNA production after 
stimulation of the T cell receptor or exposure to histone deacteylase inhibitors [162]. Notably, the 
repressive effect of estrogen was most pronounced in cells taken from women, ex vivo stimulation 
of cells from men also showed a blunting of HIV expression by estrogen, but with a smaller effect 
size [162]. Taken together, the data suggest that HIV transcription is directly affected by sex ste-
roids, offering a novel pathway that can be modulated to enhance efforts at reactivation.

The precise determinants of latency maintenance and the ideal pathway for selective activation of 
HIV transcription remain open questions (reviewed in [163]). Current efforts at latency reversal 
have included a significant focus on the histone deacetylase inhibitor class of chromatin remodel-
ing agents (reviewed in [164]). Distinct methylation and transcriptional profiles of immune cells 
from men and women underline the epigenetic controls of sex differences [165]; these differences 
may have implications for the efficacy of chromatin-remodeling agents in HIV latency reversal. 
Other stages between a latent provirus and production of a replication- competent viral particle 
such as post-transcriptional and post-translational modifications and trafficking may also be tar-
gets for functional cure strategies. To date, there are no specific data to suggest sex differences at 
these stages in the viral life cycle.

Immunomodulatory therapies
Other agents in preclinical or early clinical trials for HIV cure include immunomodulators 
including checkpoint inhibitors such as anti-PD1. Sex has recently been identified as a predic-
tor of response to anti-PD1 therapy in the setting of cancer [166]. It is not known whether these 
differences reflect sex effects on the therapy or on the tumor, but given the differences in immune 
phenotypes between men and women, responses to checkpoint inhibitor therapy in women in 
all settings should be carefully monitored. The TLR7 agonists are another class of agents under 
evaluation for latency reversal; as detailed previously, TLR7 is encoded on the X chromosome and 
both gene dosage [57] and hormonal effects [58] lead to sex specificity in function. Women may 
have a higher likelihood of both adverse effects and positive responses to this type of therapy, and 
sex-stratified analyses should be explored. 
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Threading through this discussion is the subtext that women must be included in clinical trials in 
order to clearly assess sex-specific effects. A challenge to those efforts is the potential for repro-
ductive toxicity of some of the therapies in clinical trials. Policy guidelines from the NIH on the 
inclusion of women in research [167] and the American College of Gynecology and Obstetrics 
(ACOG) on the inclusion of pregnant women [168] offer guidance on the inclusion of this more 
“scientifically complex” population. These factors must be considered together with the specif-
ic risks and ethical considerations in HIV-cure research along with ongoing engagement of the 
community living with HIV. Efforts should be made to include women in trials relevant to cure 
and to evaluate the efficacy of these agents in a sex-specific manner whenever feasible.

Implications 
Sex differences in reservoir size, location (anatomic and cellular compartments), residual activ-
ity, integrity (ie, frequency of defective sequences), and inducibility are all possible based on the 
known biological differences between men and women. This represents both a challenge and an 
opportunity. The challenge is to include women in clinical trials while accounting for the incon-
venient variance associated with hormone fluctuations, reproductive risks associated with some 
latency reversal agents, and the difficulty enrolling women in clinical trials. The opportunity lies 
in the fact that some of these biological differences will point to important mechanistic pathways 
that determine reservoir size and replication competence. These pathways may include direct sex 
hormone activity or immune factors such as the type 1 interferons.

Initial findings regarding the effect of estrogen on latency reversal have provided the basis for 
development of a clinical trial to test the potential for synergistic reactivation of HIV latency with 
estrogen blockade combined with transcriptional activators [169]. This is only the first example of 
how a comparative biology approach may highlight novel therapeutic pathways relevant to HIV 
cure.

CONCLUSIONS
Women bear a substantial share of the burden of HIV infection worldwide and remain underrep-
resented in clinical studies [83] and specifically in trials relevant to cure [145]. At every stage of 
infection from acquisition, treatment and pathogenesis, and cure, there are sex differences in the 
response to HIV (Table 1). Disentangling the effects of hormone exposure from genetic determi-
nants is 1 strategy for identifying therapeutic targets. Enrolling women who are premenopausal 
or postmenopausal, and studying the effects of hormones in transgender individuals may help us 
isolate the contribution of hormone exposure. Studies with low or unbalanced representation of 
women may inappropriately attribute a sex-driven difference in inflammatory or virologic char-
acteristics to an intervention such as vaccination or a cure strategy. When enrollment of women 
is limited, aggregation of data from multiple sources may allow more balanced assessment of 
sex-specific risks. There is a need for sex-stratified analyses, proportional inclusion of women, and 
clinical trials to investigate biological pathways that may differ between women and men. This 
research would offer the promise of not only uncovering pathways relevant to women, but also of 
clarifying the precise regulatory pathways that may reveal interventions relevant to both men and 
women.
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Table 1

Feature of HIV Sex difference Postulated mechanisms

Acquisition

Enhanced risk of sexual trans-
mission to women

-anatomic differences in mucosal surfaces 

-hormonal modulation of target cells at 
mucosal sites

-local inflammation in response to sexually 
transmitted diseases increasing target cells 

Inconsistent efficacy of PrEP in 
women

-sociobehavioral determinants of adherence

-microbiome-mediated reduction of local 
tenofovir concentrations in the female geni-
tal tract

Vaccine effectiveness -X chromosome genes and regulatory ele-
ments that affect the immune response to 
vaccines.

Pathogenesis

Lower setpoint viral loads in 
women during early infection

-more efficient/robust type 1 interferon 
response in women

-more efficient adaptive immune response 

-estrogen effects on transcription

Enrichment of women in post 
treatment and spontaneous 
controllers
Enhanced risk of comorbid dis-
ease in HIV-infected women

-greater relative risk of comorbidities driven 
by inflammation/immune activation

Cure

Proviral reservoir comparable 
but decreased measures of res-
ervoir activity in women

-estrogen control of transcription

-differences in quality of proviral reservoir

-differences in inducibility or T cell subset
Curative interventions targeting 
host immune responses

-sex differences in epigenetic structure may 
modulate efficacy of chromatin modifiers

-sex is a predictor of checkpoint inhibitor 
performance in cancer

-TLR7 agonists may have sex differential ef-
fects given baseline sex differences in activi-
ty and expression 
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